HRDUINO

ANDROID
PROJECTS g

ARDUINO

FOR ge=y » WITH YOUR

SMARTPHONE
OR TABLET

- L] -
Geiger Counter q

Create Android-controlled Arduino devices
Follow along with step-by=step instructions and detailed illustrations
Learn to use the Android Open Accessory Development Kit

SIMON MONK

Arduino™ + Android™ Projects for the Evil Genius™

To Linda. The love of my life.

About the Author

Simon Monk has a bachelor’s degree in Cybernetics and Computer Science and a doctorate in Software
Engineering. He has been an active electronics hobbyist since his school days and is an occasional author
in hobby electronics magazines. He is also author of 30 Arduino Projects for the Evil Genius and 15
Dangerously Mad Projects for the Evil Genius.

Acknowledgments

I THANK LINDA for giving me the time, space, and support to write this book and for putting up with the
various messes my projects create around the house.

I also thank my boys, Stephen and Matthew Monk, for taking an interest in what their Dad is up to
and their general assistance with project work.

Finally, I would like to thank Roger Stewart, Patricia Wallenburg, Mike McGee, and everyone at
McGraw-Hill, who did a great job once again. It’s a pleasure to work with such a great team.

Introduction

THIS 1S A PROJECT BOOK that marries together the simple-to-use microcontroller boards (Arduino) and
the world of Android mobile phones and tablet computers.

The book contains detailed instructions for constructing various projects that use Arduino and
Android devices. Some of the projects, such as the Geiger Counter and the Ultrasonic Distance Meter, are
essentially electronic accessories for your Android phone.

Other projects in the book work toward a home automation system, complete with electric door lock
and a remote control for power and heating, making even home automation accessible from the Internet
and your Android device.

Arduino

Arduino (Figure 1) is a small microcontroller board with a USB plug to connect to your computer and a
number of connection sockets that can be wired up to external electronics such as motors, relays, light
sensors, laser diodes, loudspeakers, microphones, and other items. They can either be powered through
the USB connection from the computer, or from a battery or other power supply. They can be controlled
from the computer or programmed by the computer and then disconnected and allowed to work
independently.

| MADE

INITALY NN M A S BE Ot me oS

d T ' P
WO
= =

DIGITAL (PWM~) F &

Figure 1 An Arduino Uno board

The board design is open source. This means that anyone is allowed to make Arduino-compatible
boards. Such competition has led to low costs.

The basic boards are supplemented by accessory shield boards that can be plugged on top of the
Arduino board. In this book, we will use three shields: the USB master shield that allows us to connect to
Android devices over USB; a motor shield for driving the wheels of a little robot; and an Ethernet shield

that will allow us to turn our Arduino into a tiny web server.
The software for programming your Arduino is easy to use and also freely available for Windows,
Mac, and Linux computers, at no cost.

Android

Android is Google’s phone and tablet operating system. Developing for Android is free. The software
development tools are free and there are no fees associated with distributing your app. You can also
deploy directly without having to use Google’s Market.

Apps for all the Android projects in the book, such as the one shown in Figure 2, are available for
download from the book’s web site at www.duinodroid.com. However, should you wish to modify the
apps, the source code is also freely available from the web site.

an 3y

i Counts per Minute
|

116

Log
Time CPM
458 26

Figure 2 The Geiger Counter app

Arduino and Android

Arduino is all about electronics connecting things together, but it lacks much in the way of a user interface
and wireless connectivity. Android, on the other hand, has great user interface capabilities but no means
of directly connecting to electronics.

Putting these two together, the Evil Genius can do great things!

Android Open Accessory

http://www.duinodroid.com

At Google’s developer conference (Google 10 2011), the Open Accessory standard was announced. This
is the standard for creating hardware accessories for Android devices that plug into the Android device
through its USB connection. This is available for cell phones and tablets with Android 2.3.4 or later.

The really cool thing about this standard is that it is based around Arduino technology. Great news
for Arduino enthusiasts and five of the projects in this book (Geiger Counter, Light Show, TV Remote,
Temperature Logger, and Ultrasonic Range Finder) are Open Accessory projects.

The book introduces the concept of a Droid Duino Base, which takes an Arduino’s microcontroller
off the Arduino board and fits it into a socket on the prototyping area of a USB host shield. This removes
the need for an Arduino for each project, reducing the size and keeping the cost down to a few tens of
dollars per project. This forms the basis of four of the projects in the book and makes a handy module to
reuse in your own Open Accessory projects.

Amarino

In some situations, a wired connection is not what is needed. For example, in the first project in this book
(Bluetooth Robot), wires would really cramp the robot’s style. We can, however, use a clever bit of
technology called Amarino that will allow us to remote control a small robot from an app on an Android
phone.

Sound Interface

The second section of the book is concerned with building a home automation system using a low-cost
Android tablet as the controller, which communicates with an Arduino device to provide the electronic
interface. These tablets do not often have Bluetooth or Open Accessory capability, so a wired interface
between the tablet and an Arduino is made using the audio jack.

This uses the same approach as the cassette tape interfaces employed by home computers in the
1980s.

The Book

All the projects in this book contain step-by-step construction details. All require some soldering, so a
basic familiarity with soldering is required.

Schematic diagrams and layouts for stripboard or perfboard are provided.

All the Arduino sketches and Android apps are made freely available, so you do not need to know
how to program. However, the software is explained for those who want to modify the designs or
understand the basic principals before designing their own projects.

The book also includes an Android Open Accessory Primer appendix for those wishing to
understand more about this framework and how to program it on both the Arduino and Android sides.

Projects

Each of the projects in this book is contained in its own chapter. Most of the projects can be built in
isolation; however, the home automation projects of Chapters 8, 9, 10, and 11 all require the home
automation controller of Chapter 7 to be built.

The projects in this book are summarized in the following table on the next page.

The number of stars under the Difficulty column for each project will give you an idea of the ease of
construction. The more stars, the more difficult the project. None of the projects require any surface-
mount soldering or indeed anything finer than a 1/10-inch-pitch stripboard.

Chapter Project Notes Difficulty
1 Bluetooth Robot Control a small rover from your Android L8 i
phone using Bluetooth and an Arduino
and motor shield.
2 Android Geiger Counter An Android Open Accessory project using LR b
a USB host shicld and Arduine Uno,
3 Android Light Show A powered Open Accessory dock for your *kk
Android phone that drives three LED
panels to make a sound-sensitive hight show,
4 Android TV Remote Programmable infrared remote control ok
accessory for your Android phone.
5 Temperature Logger A temperature logger that uses the ok
Android phone to wirclessly send readings
to Pachube.
6 Lltrasonic Range Finder An Android Open Accessory project for ok
measuring distance,
7 Home Automation The Android tablet base unit with an audio Hokk
Controller jack interface to Arduino.
Home Automation Add control of AC outlets and lights to the L
Power Control Home Automation Controller project
from Chapter 7.
9 Home Automation Add in remote control of domestic heating ek
Thermostat to the home automation controller using
low-cost RF data modules.
10 Remaote Door Lock Control access to your home using RFID Lh S
tags; also includes a RF link to the home
automation controller.
1 Ethernet Flag Network control of two flags that can be ok
activated from any Internet device. Useful
for the Evil Genius to summon minions.
12 Delay Timer A simple-to-make Arduino-based delay timer, e &

Components

All the components used are readily available and suppliers as well as part numbers are given wherever
appropriate. Farnell part numbers are provided for the standard components. Even if you do not order
them from Farnell, this can be helpful to identify exactly what the component is before ordering
elsewhere.

SparkFun is a quick and reliable supplier of Arduino-related hardware, and in the UK, Proto-PIC
has a good range of Arduino-related boards and shields at competitive prices.

For other items, eBay is always a good low-cost source of components, but quality can vary.

Getting Started

If you are interested in the Android Open Accessory projects then the Android Light Show project is not a
bad project to begin with. It includes the instructions for building the Droid Duino Base that is the main
component of the other Open Accessory projects (with the exception of the Geiger Counter).

For those budding Evil Geniuses more interested in automating the Evil Genius Lair, start with
Chapter 7, the Home Automation Controller, as this is the basis for the subsequent home automation
projects.

If you find yourself wanting to know more about using the Arduino, you may wish to look at the other
books by this author: Programming Arduino and 30 Arduino Projects for the Evil Genius.

For source code, build apps, and much more, please visit the book’s web site at

www.duinodroid.com.

http://www.duinodroid.com

PART ONE
Android Peripherals

| __::__
//, _:
Nl

CHAPTER 1
Bluetooth Robot

THE EviL. GENIUS and his Android phone are inseparable. You will find him using it for grocery
shopping, redirecting military satellites, and messaging his minions. The Evil Genius also loves to direct
small robots by remote control using Bluetooth.

This project employs a simple Android app (Figure 1-1) and an Arduino-controlled robot using a
low-cost Bluetooth module (Figure 1-2).

Figure 1-1 A remote-control app

Figure 1-2 A Bluetooth robot
Arduino boards are very popular microcontroller boards that have a number of advantages, not the
least of which are:

» They are easy to program, and can be programmed from a Mac, Windows, or Linux computer.
» Many “shields” just plug into the top of the Arduino board.
» They are not expensive.

Construction

Figure 1-3 shows the schematic diagram for the project.

GND &Y
Battery
Android Fhone
+ 6Y
Arduino Uno
Blugtooth

Bix T
Bl t ﬂ-| -‘.'x- ii:l’

Module S R
Wioo W

Right

Figure 1-3 The schematic diagram

The robot’s drive motors are controlled by a motor shield kit, and the Bluetooth module is attached
to the prototyping area of the shield, making this a simple project to construct, with a minimal amount of
soldering required.

All the software for the project can be downloaded from www.duinodroid.com.
What You Will Need
In addition to a Bluetooth-equipped Android phone (Android 2.1 or later), you will need the components
found in the following Parts Bin to make the project.

http://www.duinodroid.com

PARTS BIN

Part
Arduino Uno

Ardumaoto

BT Module

Pin headers

Serew terminals
Ciear motors
Switch

Battery holder
Case

Wheels

Caster

Guantity

Lad

2

Description

Arduino Uno board
Ardumoto Motor Shield

TTL Bluetooth module:
BluesmirT or the equivalem

Pin header strip, broken into two sections
of six pins, and two sections of eight pins

2-way screw terminal, 3.5mm pitch
1201 mini plastic gear motor

SPST miniature toggle switch

AAA battery holder, solder tags (4x)

Plastic case, 145 > B0 @ 30mm

Approximately 2-inch- (50mm-) diameter

model car wheels

Small caster

Source

www.arduino.ce

Sparkfun: DEV-9E15

eBay, Sparkfun
Farnell: 1097954
Farnell: 1217302
Pololu: 1125

Farnell: 1661841

Farnell: 1650687

Maodeltoy shop

Hardware store

This design uses the Arduino Uno. The official Arduino web site (www.arduino.cc) lists suppliers
of the Uno. However, if you are on a budget, you can use a clone of the Arduino Uno. The Arduino is
“open-source hardware,” which means all the design files are available under a Creative Commons
license that permits third parties to make their own Arduinos. Many do, and an Internet search will find
you cheap alternatives to the official “Uno.”

There are many different types of Bluetooth modules on the market. The module that the author used
is a simple “stick of gum”—shaped Bluetooth module with just four pins coming out of it that supply power
and provide, receive, and transmit connections. These types of modules work at 5V and are ideally suited
for use with an Arduino. They are usually made up of a base board with four pins on which an even
smaller board is mounted that is the actual Bluetooth module. These can be bought on eBay for around
USD 15. It is best to buy one with the miniboard already soldered to the main board, because the
connections are very tiny and quite hard to solder. Higher-quality and more expensive versions are
available in the Bluesmirf range from suppliers like Sparkfun. The main difference between the low-cost
and more expensive modules is range.

The gear motors from Pololu are ideal for this kind of application. They have about the right gear
ratio and are not expensive. Alternatives are available, but try not to buy gear motors that draw more than
about 1 amp, otherwise the motor shield will struggle to provide the necessary current.

The motor shield greatly simplifies the whole process of driving motors, and what’s more, it has a
handy little prototyping area at one end where you can attach your own extra components. In this case, that
is where our Bluetooth module will sit. In the parts list, I specified the basic shield kit, which comes
without header strips and screw terminals. This shield is also available as a “retail” kit that includes the
pin header and screw terminals. See Sparkfun’s web site for details.

In addition to these components, you will also need the following tools.

TOOLBOX

v 4

» An electric drill and assorted drill bits
» A hacksaw or Dremel rotary tool
» A hot glue gun or epoxy glue

http://www.arduino.cc

» A computer to program the Arduino
» A USB-type A-to-B lead

Step 1. Attach Pin Headers to the Shield
The first step is to attach the pin headers to the motor shield. Figure 1-4 shows the bottom of the shield

with the pin headers attached. Your header strips will probably come in a single long length that is
designed to be snapped into sections of the correct length. You will need to break off two lengths of six

pins and two lengths of eight pins.

o
Q
o
Q
o
(*)

o
o
@
o
Q
o
Q
Q
o
Q
Q
Q
Q
Q
Q
(=}

00000000000000
0000000000000000
0000000000000000

0000000000 (P

0000000000000 000
00000000000000

Figure 1-4 The motor shield with pin headers attached
The easiest way to keep the pins straight is to plug the long ends of the headers into your Arduino

board while you solder them to the shield. However, this will heat up the plastic of the socket underneath
and may distort it. So either solder quickly, or just solder the pins at each end of a section so the header is
held in the right place, and then remove the shield and solder the rest of the pins.

When all the pins are in place, the top of the shield should look like Figure 1-5.

~F

0000000000000 0 = »

00000 ¢.:
0000000000

0000000000000000 =

0000000000000000 4.
00000000000000 Fum =,
0000000000000000 7.
0000000000000000 .

000000
{;-‘ji.

Figure 1-5 The top side of the motor shield

Step 2. Attach Screw Terminals to the Shield
The screw terminals fit next to the A and B channels for the motors. We will also attach a screw terminal
to the power socket, as it is easier to connect to than the main 2.1mm power socket on the Arduino.

Solder the four screw terminals into place, with the opening facing toward the outside of the shield.
Figure 1-6 shows the shield with the screw terminals attached and the shield plugged into an Arduino.

PUHE: 11+

Ardumoto

00000000000000 "

00000000000000 2
00000000000000 ™ .
+ 9000000000

000000000000 rHA 34

O
(o)
(o]
(o)
(o)
O
(o)
(o)
(o)
(@)
(o)
(o)
(o)
(@)
(o)

000000
o
o
o

0000

Analog In
R

GND
UM

(o]
O
(o]
o)
(o]
c.
(o]
(o)
(o)
(o)
(o)
(o)
(o)
(o)
(o)
(o)

[

Figure 1-6 The shield with screw terminals attached

Step 3. Install the Bluetooth Module
Figure 1-7 shows the Bluetooth module soldered into place and the wiring attached.

- v = v g
o T R Pl Ml

LN L I i
= L

a - %
-]
-
m
=
=
[+ %

Figure 1-7 The completed shield
Before attaching the Bluetooth module, carefully bend the pins with pliers so the board lies flat
against the shield. Solder the module itself into place first, and then attach the four wires as listed next:

= +5V on the Bluetooth module to +5V on the shield

= GND on the Bluetooth module to GND on the shield

s TXD on the Bluetooth module to RX on the shield

s RXD on the Bluetooth module to TX on the shield
Note the cross-over between transmit and receive between the Arduino and the Bluetooth module.
That’s it for the electronics. We now turn to constructing the hardware for the robot.

Step 4. Fix the Motors and Battery Box to the Case
Figure 1-8 shows the position of the motors. The plastic housing of the gear motors is glued to the inside
of the box.

Figure 1-8 The motors and battery box glued to the inside of the box
The motors and battery box are fixed to the bottom of the case, at either end, leaving room for the
Arduino and shield in the middle.

Step 5. Cut the Case Bottom and Fix the Castor
Figure 1-9 shows how the case bottom is cut to allow the top of the gear motors and their drive shafts to
protrude from the bottom of the case.

Figure 1-9 The case bottom

It is also a good idea to make a hole close to the Bluetooth module so you can see if the LED on the
module is flashing or solid. The box used by the author was reused from a previous project and had
various holes in it. This is not a bad thing as it allows ventilation.

The castor is merely the smallest castor the author could find at the local hardware store. This is just
glued to the bottom part of the case.

Step 6. Final Wiring

The wiring is made easy by the screw terminals. Figure 1-10 shows the wiring diagram, while Figure 1-
11 displays a photo of the inside of the robot.

Figure 1-10 The wiring diagram

CLoWnPpa L

Figure 1-11 Inside the robot
The wiring steps are:

1. Solder leads from each of the tabs on the gear motors. The leads should be long enough to comfortably
reach the screw terminals on the motor shield.

2. Solder a lead directly from the negative power terminal on the shield to the negative of the battery
holder.

3. Solder a longer lead to the center connection on the switch to the positive battery terminal.

4. Solder a shorter lead to one side of the switch (it does not matter which) and fit the other end into the
positive screw terminal.

Step 7. Test the Motors
We now need to set up our Arduino environment so we can install a program to test the motors before
going ahead and linking it all up with Bluetooth.

The Arduino board we are using (Arduino Uno) uses a special-purpose development environment
that allows us to send programs, or “sketches” as they are called in the Arduino world, to the board
through the USB lead.

We need to install the Arduino environment, and rather than repeat instructions given elsewhere,
please refer to the official Arduino site (www.arduino.cc) and follow the instructions there for installing
the Arduino environment on your computer. You will find separate instructions there for Windows, Linux,
and Mac. This book uses version 22 of the Arduino software and the Arduino Uno interface board;
however, you should have no problem using later versions of Arduino.

Once your Arduino environment is set up, you need to install the test sketch for the project. In fact,
all the sketches for the projects in this book are available in a single zip file that can be downloaded from
www.duinodroid.com.

Unzip the file and move the whole Arduino Android folder to your sketches folder. In Windows,
your sketches folder will be in My Documents/Arduino. On the Mac, you will find it in your home
directory, Documents/Arduino/, and on Linux it will be in the Sketchbook directory of your home
directory.

After installing the library, restart the Arduino software. Then, from the File menu, select Sketches,
followed by Arduino Android, and then chO1_motor_test. This will open the motor test sketch, as shown

in Figure 1-12.

http://www.arduino.cc
http://www.duinodroid.com

#def ine supplyVolts &
#def ine motorvolts 5

int pwnbeftPin = 3;

int. punRightPin =« 113

int directionLeftPin = 12;
int directionRightPin = 13;

woid sat :-':{}
{
pinHode{pemLef tPin, OUTPUT);
pirHode{pemiightPin, OUTFUT);
rode{directionlef tPin, OUTPUTY;
pirtode{direct ionRightPin, OUTPUT);
settotors{a, @7;

Bl

i

vold Loopd)

1
/4 forword
setotors(Z55, 255); 9
de Loy 18883 v

Binary sketch size: 1634 bytes (of a 32256 byte

5

Figure 1-12 The motor test sketch

Before we actually run the motors, we may need to change the setting at the top of the script called
motorVolts. Set this value to the maximum voltage for your gear motors, if it is different from the Pololu
motors—which are nominally 4.5V, but are fine at 5V—you will need to change this value.

The Bluetooth module utilizes the Arduino Rx and Tx pins used by the interface, thus we cannot
program the Arduino with the shield connected. So take the shield off for now.

Connect your Arduino board to your computer via USB. We need to tell the Arduino software what
type of board we are using, so to set the board, go to the Tools menu and select the Board option. This
will give you a list akin to that shown in Figure 1-13.

__® _Arduino File Edit Sketch Help i3

Auto Format KT

Aschive Sketch

Fix Encoding & Reload

Serial Monitor XM [=]

d v Arduino Uno
Serial Port [3 Arduino Duemilanove or Nano w/ ATmegad 28
| T Arduino Diecimila, Duemilanowve, or Nano wi ATmegalBg
: Biar facidons * Arduino Mega 2560

(soundPin, I¥UTY Arduing Mega (ATmegal280)
e LG

Arduing Mini
Arduino Fio
L opepuiis Arduing BT wf ATmegai2i
L bitCouwnt = B Arduing BT w/ ATmegal68
4 LilyPad Arduing w/ ATmegal2g
{ LilyPad Arduino wf ATmegal6g
f(FEgitatRecs{aunPin) Arduing Pro or Pro Mini (5V, 16 MHz) w/ ATmega328

{
SROTETime = Arduing Pro or Pro Mini (5V, 16 MHz) w/ ATmegalb8
i

*H
heoci (s ier) Arduing Pro or Pre Mini (3.3V, B MHz) w/ ATmegal28
o (3 - s2artTime = 500} Arduing Pro or Pro Mini (3.3V, B MHz) w/ ATmegalbs
{ Arduino NG or older w/ ATmegalGi
L L Arduino NG or abder w/ ATmegaB

{

Figure 1-13 Selecting the Arduino board type

Select the option for the type of board you are using (Arduino Uno). We then need to do a similar
thing for the “Serial Port,” which is also part of the Tools menu. This will generally be the top option on
the list of ports (COM4 on Windows).

We are now ready to upload the sketch to the board by clicking the upload icon (second from the
right on the toolbar). If you get an error message, check the type of board you are using and the
connection.

Now that we have programmed the Arduino with the motor test script, detach the USB cable and
reattach the shield. Turn on the switch. The motors should now go through the test sequence.

» Both motors forward
» Both motors backward
» Rotate clockwise
» Rotate counterclockwise
» Pause for five seconds
If one of the motors is not working, check the wiring. If you find that one of the motors goes forward
when it should go backward, swap over the leads at the screw terminals for that motor.

Step 8. Install the Real Arduino Sketch
So far, so good. We can now move on to the next step of installing the real sketch for the motors, which
will get its commands from Bluetooth.

The Android app uses a technology called Amarino (www.amarino-toolkit.net). This open-source
technology greatly simplifies the writing of Bluetooth Arduino applications. It has two parts, a library that
must be installed in your Arduino environment on your computer and an app for the Android phone.

To install the library, go to the downloads page on the Amarino web site (www.amarino-
toolkit.net/index.php/download.html) and then click the link for “MeetAndroid - Arduino Library.”
Download the zip file, unzip it, and move the unzipped folder to your Arduino libraries folder. In
Windows, your libraries folder will be in My Documents/Arduino. On the Mac, you will find it in your
home directory, Documents/Arduino/, and on Linux, it will be in the sketchbook directory of your home

http://www.amarino-toolkit.net
http://www.amarino-toolkit.net/index.php/download.html

directory. If there is no Libraries folder in your Arduino, then you will have to create one. After installing
the software, restart the Arduino software.

Turn the power to the robot off and unplug the Arduino board. Then open the sketch
ch01_droid_droid in your Arduino software.

Before uploading it, some changes may need to be made. First, if you are using different motors,
change the motorVolts value.

Second, check the documentation of your Bluetooth module to see at which speed it communicates
with the Arduino. This is often 9600, but can be faster for some modules.

Finally, you can upload the sketch to the board the same way you did the test script. If you get
compilation errors, it is almost certainly due to the Amarino library folder being in the wrong location.

Disconnect the Arduino board from the USB lead and reattach it to the shield. Now we get to the
exciting bit!

Step 9. Install the Android App
Unlike the iPhone, you can download your Android applications from anywhere you like. This does mean
you have to make sure you are not downloading anything malicious, so you may need to change a setting
on your Android device to accomplish this.

Open the Android “Settings” app, navigate to Applications, and check the Unknown Sources box, as
shown in Figure 1-14.

A G 102 A

Application settings
Unknown sources

| of non-Market

Quick launch

Set keyboard shortcuts to launch applications

Manage applications

Manage and remove installed applications

Running services

Development

set options for application development

Figure 1-14 Changing Android settings to allow download
To use the app for the robot, we must first install the general-purpose Amarino app, which allows us
to manage our Bluetooth devices. This can be downloaded from the Amarino web site, by using your web

browser on your Android device and navigating to www.amarino-toolkit.net/index.php/download.html.
Then, click the link for “Amarino - Android Application.”

To install the robot control app itself, open the browser app on your Android device and navigate to
www.duinodroid.com. Click the Downloads tab and then the link for the DroidDroid app.

Step 10. Try It Out!
Before you run the DroidDroid app, we need to run the Amarino app (Figure 1-15).

= al B 319

First you have to add a new Bluetooth
device.

i]

Add BT Device Monitoring

Figure 1-15 The Amarino app

Power up the robot. You should find that the LED on the Bluetooth module is blinking. This indicates
that the module is not yet paired to anything. The Amarino app will allow us to pair it with your phone.

From the main menu shown inFigure 1-15, click the big green Add button. You will then be
presented with a list of Bluetooth devices in range.

Select your device from the list. This will return you to the front page with your device added to the
list of devices. Clicking Connect will start the pairing process. You will be prompted for a pairing key
for the Bluetooth module. This will probably be “1234”, but may be “1111”. Consult the documentation
for the Bluetooth module. Once the pairing is successful, the blinking light on the Bluetooth module should
remain lit. Write down the Bluetooth ID for the device. This is the six-part number with colons between
each two digits and you will need it in a moment.

Launch the DroidDroid app (Figure 1-16). Next, enter the Bluetooth ID for the device you just noted
down from the Amarino app. When you click “Set Device ID,” it will launch the main controls (as shown

back in Figure 1-1).

http://www.amarino-toolkit.net/index.php/download.html
http://www.duinodroid.com

DroidDroid

00:11:04:08:04:64

Set Device ID

Figure 1-16 Setting the Device ID
Sliding the controls up and down should drive the left and right motors of your robot.

Theory

The software for this and all the other projects in this book are provided as open source and you are
encouraged to make your own improvements. The author would very much like to hear about any
improvements you make to the software. You can contact the author at www.duinodroid.com.

In this section, we are going to have a quick look at the software used in this project, starting with
the Arduino sketch.

The Arduino Sketch

The well-crafted Amarino software makes writing the software for this project a great deal easier than it
would be otherwise.

The following description assumes you have an understanding of the C language used to program the
Arduino. If you want to learn more about programming the Arduino, then you may wish to buy the book
Programming Arduino by this author.

The listing for the sketch is given next:

http://www.duinodroid.com

#include <Meetindroid.h>

#define supplyVolts 6

#define motorVolts 5

#define baudRate 9600

MeetAndroid phone;

int left = 255:; // midpoint

int right = 255;

int pwmLeftPin = 3;

int pwmRightPin = 11:

int directionLeftPin = 12;

int directionRightPin = 13;

void setupl)

{
pinMode (pwmLeftPin, OQUTPUT) ;
pinMode (pwmRightPin, OUTFPUT);
pinMode (directionLeftPin, QUTEUT) ;
pinMode (directionRightPin, OUTFUT) ;
setMotors () ;

!/ use the baud rate your bluetooth
/4 module is configured to
Serial.begin(baudRate) ;
phone.registerFunction(setLeft, '1'};

rhone.registerFunction(setRight, 'z');

void loopl)
{
phone . receivel) ;
i
void setLeft (byte ignore, byte count)
(
int wvalue = phone.getInt{);
laft = walue;
setMotors();
}
void setRight(byvte ignore, byvte count)
{

int wvalue = phone.getInt{):
right = walue;
setMotors();

}
vold setMotors()
{
int vLeft = abs(left - 255} *
motorvVoles / supplvVolts;
int vRight = abs{right — 255%) *
motorVolts / supplyVolts;
int dheft = {left > 255);
int dRight = (right = 255);
if [vLeft < 50)

Theft =
¥
if (vRight = 509
{
vRight = 0;
}
analogWrite (pwmLeftPin, wvLeft):
analogirite (pwmRightPin, wvRight);
digitalWrite(directionLeftPin,
dLeft) ;
digitalWrite(directionRightPin,
dRight) ;

The sketch starts with three constants. The values of supplyVolts and motorVolts are used to scale
the power supplied to the motors. So if you adapt the design to use different motors of a different battery
pack, you will need to change these values.

The baudRate variable should match the baud rate used by the Bluetooth module to communicate
with the Arduino.

The interface to the phone is all contained in the MeetAndroid library. To gain access to it, you must
create an instance of it—in this case, called “phone”.

The variables “left” and “right” are used to hold the speed of each motor. They have a center value
of 255. Meaning that at 255 the motor is stopped, at 511 it is full-speed forward, and at 0 it is full-speed
reverse.

The next four variables are define the pins used for the motors. These are set by the motor shield, so
they cannot be changed. Each motor is controlled by two pins. The “pwm” pin controls the speed of the
motor: 0 being stopped; 255 being full speed. The “direction” pin changes the direction: 1 for forward,
and O for reverse.

The setup function sets the appropriate pin modes and starts the serial port running. It also defines
two callback functions—setLeft and setRight—that will be called whenever the sketch receives a
message from the Android phone to set a new motor speed with the command letter “I” or “r” for the left
and right motors, respectively.

All we actually need in the “loop” function is to call the “receive” function in the MeetAndroid
library. This checks for any incoming messages and calls the appropriate callback function.

The two callback functions are responsible for setting a new value for the “left” and “right”
variables. The parameters to the callback functions can both be ignored. To retrieve the value sent by the
phone, the callback function uses the getInt function.

The setMotors function calculates the appropriate analog output values and scales them to account
for the difference between the supply voltage and the motor voltage. It also calculates the direction for
each motor and sets the appropriate output values.

The Android App

The Android app is the more complex part of the project, and learning Android programming is a book in
its own right. In fact, many such books are available. But at least we can have a little look at the section of
code that sends the value to the Arduino.

private woid updatelLeft () {
Amarino. sendDataTolArduinoe (this,
DroidDroid.DEVICE ADDRESS, '1°,

(511 = leftl)):

The interface is beautifully simple. You just call the method sendDataToArduino. The first argument
is the Android Activity instance (think screen); the second argument is the Bluetooth ID of the device. The
next parameter is a single-character flag that will be either “1” or “r”, and it is this flag that is used to
trigger the appropriate callback function on the Arduino.

The final argument is the integer value sent to the Arduino, which will be a value between 0 and 511.

Summary

This is the first of a series of fun things to do with your phone. In the next chapter, we are going to use
Google’s new ADK technology to create a Geiger counter accessory for our Android phone. Click-click-
click, RUN!!!!

CHAPTER 2
Android Geiger Counter

THE EviL GENIUS’S MINIONS are always leaving radioactive material lying around after his failed
attempts at world domination. Tired of continual accidental exposure to radiation, the Evil Genius
decided to make a Geiger counter accessory for his Android phone (Figure 2-1).

@ &
Dl il |
Droid Geiger @

v - detector

Figure 2-1 The Android Geiger counter

Google, developers of the extremely successful Android mobile operating system, chose Arduino as
the basis for their open accessory development kit (sometimes called ADK). This is a protocol
specification and library software developed by Google to encourage third parties (that’s us) to develop
hardware accessories to which an Android device can be docked, via its USB connection.

While Google probably expected accessories to be boom boxes and other fairly dull living room-
type accessories, the Evil Genius seized the opportunity to develop some more exciting open accessories
for his cell phone, such as this Geiger counter.

The Geiger counter uses a cheap Geiger-Miiller (GM) tube sourced on eBay for about USD 20. The
tube is not sensitive to alpha radiation. Such tubes are more expensive and difficult to obtain, but should
still work fine with this design.

The whole project should cost less than USD 100, including the Arduino and USB host shield.

CAUTION

This project generates 400V for the Geiger tube. This voltage will be stored in the capacitors
after power has been removed from the device. This can harm you, so take great care when
constructing this project. In addition, if you wire this project incorrectly, you could pass a high
voltage into your phone and damage it. The author and publisher accept no liability for any
damage that may occur to your phone when using this project. Further, do not expose yourself
to radiation. Be content to measure the background count.

Google Open Accessory

The Google Open Accessory Development Kit is based on Arduino technology. You can buy a special
development board based on the Arduino, but with LEDs and various other hardware already soldered on
the board, you can achieve greater flexibility by using a standard Arduino board and a USB host shield.
Open accessory support is only available in phones that have Android 2.3.4 or later. So before
ordering any components, make sure your phone supports Accessory Mode and either has 2.3.4 or can be
upgraded to that version or later.
Figure 2-2 shows how things work with the Android and Arduino using the Android ADK.

Arduino Uno

USE Host
Shield Library Android

Android Phone
Accassory
Library

LUSB Master
Shield <

Data

| LSE Slave

Charging Power 5V at 500mA

Figure 2-2 Arduino and Android, together at last

The Android phone acts as a USB client. That is, it is the Arduino that is in charge of the situation as
the USB host. It must initiate the connection with the Android phone. When it does so, it can also trigger
the phone to automatically switch into accessory mode and open a custom app. In this case, it will open
the DroidGeiger app we have developed for this project.

The Arduino is also required to provide charging power to the phone. So any accessory we build
using our Arduino must be capable of providing up to 500mA at 5V over USB to charge the phone. This
means that the accessory either needs to be powered from a power adapter, or in the case of this project,
powered from a decent battery. Later in this chapter, we also look at how to get around this problem and
use a noncharging lead for the connection.

Construction

Like the robot of the previous chapter, this project uses a shield attached to the top of the Arduino Uno. In
this case, the shield is a USB host shield. You may be thinking that this is unnecessary because the
Arduino has a USB connector. Unfortunately, the USB connection on the Arduino itself is a USB client
connection, and to connect to an Android phone we need a USB host connection. In actual fact, the USB
host shield has a handy prototyping area to which we can solder the other components needed for the
project.

The schematic diagram for the project is shown in Figure 2-3.

Figure 2-3 The schematic diagram
The main purpose of the circuit is to generate the 400V needed by the GM tube. You can find a more
detailed description of how this circuit works in the “Theory” section at the end of this chapter.

What You Will Need

In addition to an accessory-capable Android phone (Android 2.3.4 or later), you will need the
components listed in the following Parts Bin to make the sound link module.

PARTS BIN

Part Quantity Description Source
Arduino Uno 1 Arduino Uno board www.arduino.cc
LISB shield | Arduino USB Host Shield Sparkfun: DEV-(9947
Pin headers | Pin header strip; broken into two sections Farnell: 1097954

of six pins, and two sections of eight pins
Switch | SPST mimature toggle switch Farnell; 1661841
Battery 1 PP3 9V NiMH rechargeable battery
Battery clip | PP3-style battery clip Farmell: 1183124
Case | Plastic case
R1 plus | 2 Tk 0.5W meetal film resistor Famnell: 9339779
R2. R4 2 4TkLY 0.5W metal film resistor Farnell: 9340637
R3 | TOMIY 0.5W metal film resistor Famell: 1779379
cl 1 10nF 1000V ceramic capacitor Farmmell: 1615007
c2 | IuF 450% electrolytic capacitor Farnell: 1822752
D1 | IMN4937 Farnell: 9843663
TI 1 MPSA44 Farnell; 1574391
L1 1 10mH choke Farnell: 1710435
Tube | GM tube (see above) cBay
Clips 2 Fuse clips Farnell: 1866007
Power plug 2. lmm power plug Farnell; 1200147

If you plan to make the noncharging USB lead, you will need two 1kQ resistors rather than just one.
You will also need an old USB extension lead.

For a longer-lasting battery alternative, use a holder that will accept six AA cells to supply the
project with 9V. This alternative is shown in some of the figures.

The key component for this project is the GM tube. These can be easily found on eBay from
international sellers, often from former Soviet Union countries. The tube that the author described is a
“Russian Military GEIGER TUBE COUNTER CI-1.”

The tube has the following specifications. However, other similar devices should work just fine. Our
Geiger counter is not for critical situations. It will not be calibrated, so accuracy is not really a
consideration.

» Type: Gamma detector

» 360—440V anode voltage
» Plateau length: 80V

w Inclination: 0.125%/V

» Load resistance: 10MQ
» Length: 90mm

» Diameter: 12mm

We will see later how to adjust the anode voltage we generate using the Arduino sketch between 0
and 450V, the limit for our capacitors.

This design employs the Arduino Uno. The official Arduino web site (www.arduino.cc) lists
suppliers of the Uno. However, if you are on a budget, you can use an Arduino clone of the Arduino Uno.
The Arduino is open-source hardware, which means that all the design files are available under a
Creative Commons license that permits third parties to make their own Arduinos. Many do, and an
Internet search will reveal cheap alternatives to the official Uno.

In addition to these components, you will also need the tools listed in the following Toolbox.

http://www.arduino.cc

TOOLBOX

» An electric drill and assorted drill bits
» A hacksaw or Dremel rotary tool

» A hot glue gun or epoxy glue

» Assorted self-tapping screws

» A computer to program the Arduino

» A USB-type A-to-B lead

» A multimeter with a 1000V range

Step 1. Attach Pin Headers to the Shield

The first step is to attach the pin headers to the motor shield. Figure 2-4 shows the shield with the pin
headers. Your header strips will probably come in a single long length that is designed to be broken into
sections of the correct length. You will need to break off two lengths of six pins and two lengths of eight

pins.

100 000000

)
o
o

)

0000000G

) >

)] L

A

2000000Q

by

niaiué -15.0!-I 8sNaoq Q

I

6
g1
o)
o0
o0
o0
o0
o0
o0
00

0000000@)a
@000000@Q)N

000000

06000000
00000000

Figure 2-4 The USB shield with pin headers
The easiest way to keep the pins straight is to plug the long ends of the headers into your Arduino

board while you solder them. However, this will heat up the plastic of the socket underneath, which may
distort it. So either solder quickly, or just solder the pins at each end of a section so the header is held in
the right place, and then remove the shield and solder the rest of the pins.

When all the pins are in place, the top of the shield should look like Figure 2-5.

“.USB Host Shield ™ ~

00
00
o0
Q0
00
2e
20
o

O
00000000000

o
Q
»)

Figure 2-5 The top side of the USB shield attached to an Arduino

Step 2. Attach the Low-Lying Components

Figure 2-6 shows the layout of the components on the prototyping area of the shield.

Figure 2-6 Prototype area layout
It is always easiest to solder the lowest-lying components first, so we start by soldering the resistors
and diode into place. Do not cut off the excess lead on the underside of the board, as we are going to use

these to connect up the components.

The diode must be the correct way around, which is with the stripe towards the USB socket on the

shield.
Figure 2-7 shows the resistors and diode in place.

=&+ 1ISB Host Shield

! : Er\.....‘.‘ .
m@------i
@-i--a-a
00000000
SNQ0 cog e S
FEERTLE Dﬂluiamua@ﬂﬂ
Ama mmmaaaauum
= nNODOo&: : 00
Y0000 0000
mgaaaeaaa
ﬂ-ﬁjﬁﬁ.'_ﬂ‘-

o 5"
4
517 P
i

e
o

T ﬂ

s-1rpmme Pover 5.3 "

LA

Figure 2-7 Resistors and diode on the shield

Step 3. Solder the Remaining Components
We can now solder the remaining components (Figure 2-8).

& "'j‘.USB Host Shield

@e000000
v@ee ool -
0O i
-'vrmaooouc‘ |

"(@0000L
—'n'N ﬂjﬂf,;""*"l' s -
mﬁ@ﬂ_ﬂ JOO
mmnmoooooo

@0 . 00
mQGGOj'ﬂﬁ

Figure 2-8 The remaining components on the shield

Take special care to get the transistor the correct way around. The electrolytic capacitor C2 must
also be the correct way around. The longer positive lead should be directed toward the outside edge of
the board. The inductor can be placed either way around.

Once all the components are in place, the bottom of the board should look like Figure 2-9. The next
stage is to bend and shorten the leads of the components to make all the connections between the
components shown previously in Figure 2-6.

00
2o @
000~ ave.

(o)
oG

:
AL
3
&

Figure 2-9 The bottom of the board with all the components in place
After that, the bottom of the board should look something like Figure 2-10.

00
00"
00

£
(=]
Q
5
A
o
@
=
7

(&)
O
O
&
O
(o
O
O
O

o]
¥
o)
O
O
OO0
00
o O
opo
oY: 0
o0
000
000
000

(@]
O
(®]
[
§
O
O
O

©0
Q0
00
%
00
00
@0
(5]

Figure 2-10 The component leads used to make connections

Step 4. Solder the Leads to the Arduino Pins

The final connections we need to make involve soldering some leads from the prototyping area to the
appropriate Arduino pins and then to the fuse holder sockets to connect the GM tube. Figure 2-11 shows
these connections. The leads can go through holes in the prototype area near the component leads that they
need to be connected to. Again, use Figure 2-6 as a reference to see how the leads should be connected.

—
_—

111
(¥

S

Figure 2-11 Clips for the GM tube using fuse holder sockets
Do not connect the GM tube yet. We need to make some tests first.

Step 5. The Final Wiring

The project is supplied power from either a 9V PP3 battery or a battery holder containing six AA
batteries. Since the project will charge the Arduino while it is on, it makes sense for these to be
rechargeable batteries. Either way, the battery box uses a PP3-style clip, so we need to put the switch in
line with the positive battery lead as per Figure 2-12.

Figure 2-12 The battery lead and power socket

As you can see from Figure 2-12, the power lead ends in the 2.1mm power plug that will supply
power to the Arduino and its shield. Alternatively, if space is tight, you can solder the leads directly to
the Vin and GND sockets on the shield, as shown in Figure 2-17.

Step 6. Install the Open Accessory Libraries

If you have not already done so, install the Arduino software on your computer. You can find
comprehensive instructions for this on the official Arduino web site at www.arduino.cc.

The Google Open Accessory requires that two libraries be installed into your Arduino environment.
The first of these is a version of the USB host library, which is patched to work with standard Arduino
hardware. This should be downloaded from microbridge.googlecode.com/files/usb_host_patched.zip.

If for any reason, you cannot find a download for any of the software used in these projects, please
refer to the book’s web site (www.duinodroid.com) where there will be instructions for obtaining the
software elsewhere.

To install the library, download the zip file, unzip it, and move the unzipped folder to your Arduino
libraries folder. In Windows, your libraries folder will be in My Documents/Arduino. On the Mac, you
will find it in your home directory, Documents/Arduino/, and on Linux, it will be in the sketchbook
directory of your home directory. If there is no Libraries folder in your Arduino, then you will have to
create one. After installing the software, restart the Arduino software.

The second library—the AndroidAccessory library itself—is downloaded as part of the “Adk
package download,” which can be found at http://developer.android.com/guide/topics/usb/adk.html.

Click the link for “Adk package download.” This will download a zip file. Unzip it and you will
find a folder inside named “ADK_release_0512.” It has a couple of files and three folders. The only
folder we are interested in though is the one called “firmware.” This contains a folder called
“arduino_libs” and within that are two folders, each containing an Arduino library. One is the
“USB_Host_Shield,” which we do not need to install, as we have already just installed a version of that.
However, we do need to install the AndroidAccessory library.

To do this, just move the whole
“AndroidAccessory” folder to your Libraries folder the same way you did for the USB host library.

You will need to restart the Arduino software for it to pick up the new libraries.

http://www.arduino.cc
http://microbridge.googlecode.com/files/usb_host_patched.zip
http://www.duinodroid.com
http://developer.android.com/guide/topics/usb/adk.html

Step 7. Install the Arduino Sketch

If you built the Bluetooth robot of Chapter 1, you will have already downloaded the zip file containing all
the sketches from www.duinodroid.com. If you have not downloaded this, do so now. Unzip the file and
move the whole Arduino Android folder to your sketches folder. In Windows, your sketches folder will
be in My Documents/Arduino. On the Mac, you will find it in your home directory, Documents/Arduino/,
and on Linux, it will be in the sketchbook directory of your home directory.

You will need to restart the Arduino software for it to pick up the new sketches.

From the File menu of the Arduino application, select Sketchbook, then Arduino Android, and then
the sketch ch02_Geiger_counter.

Connect your Arduino board (without the shield attached) to your computer via USB. We need to tell
the Arduino software what type of board we are using, so, to set the board, go to the Tools menu, and then
choose the Board option.

Select the option for the type of board you are using (Arduino Uno). We then need to do a similar
thing for the Serial Port option, which is also on the Tools menu. This will generally be the top option on
the list of ports (this is COM4 in Windows).

We are now ready to upload the sketch to the board by clicking the “upload” icon (second from the
right on the toolbar). If you get an error message, check the type of board you are using and the
connection.

Step 8. Test the High-Voltage Supply

The reason we have not attached the GM tube yet is because we need to make sure we are generating the
correct high voltage for it, and then tweak it as necessary.

Disconnect the Arduino from your computer and plug the shield into the Arduino board. Note that
from now on, whenever there is power supplied to the Arduino, either through the USB connector or the
battery pack, parts of the shield will be at high voltage, so be careful not to touch any bare wires. Not
only that, but the circuit will retain a charge and stay at a high voltage for some considerable time after the
power has been turned off.

Set your multimeter to its 1000V DC range and attach the test leads to the test points shown in Figure
2-13. The negative lead should go to the bottom of R4 (GND) and the positive lead to the bottom of R3
(not the side connected to the positive clip for the GM tube).

http://www.duinodroid.com

.

Cklighg

Auto Display B3

S

Figure 2-13 Testing the high-voltage output

If you have test probes rather than clips, then you will have to touch them to the test points once the
power is on.

Plug the battery into the Arduino and shield combination and turn on the switch. If all is well, you
should see a voltage of around 400V. If the voltage is within the tolerance of your GM tube, you are done.

If the voltage is too high or too low, you will need to adjust the sketch to change the voltage.

Look at the top of the sketch. You will see the line:

int op = 45;

We can adjust this value up or down (do not increase it above 200) to change the voltage up or
down, respectively.

The following table shows how the voltage changed using the author’s components. You will
probably find your results to be a little different.

Value of “op” Voltage (V)
45 400
50 425
70 500

Finding the right value is a matter of trial and error. You could carefully plug in the USB lead to your

computer and upload the sketch again with a changed value of “op” without turning everything off. If you
do this and a freak misconnection puts 400V though your USB port and destroys your computer, then don’t
say you weren’t warned. The safer alternative is to unplug everything, and using insulated pliers, hold the
two connectors for the tube together for half a minute to discharge the capacitors.

Step 9. Install the GM Tube

Unplug and discharge everything since we are now ready to attach the GM tube and see if it is working.
Fit it into the fuse holders, making sure that the positive end of the tube goes to the positive clip. The
positive end of the tube is often marked with a red dot or a + sign. If in doubt, refer to the documentation
that came with your tube.

Step 10. Install the Android App

Installing the Android app itself is now just a matter of visiting www.duinodroid.com on your phone’s
browser and following the download link for the DroidGeiger app. Note that you may need to enable the
Android option to allow apps from unknown sources as described in Step 10 of Chapter 1.

Step 11. Test

Once the app is installed, we can lay everything out on the bench, as shown in Figure 2-14.

http://www.duinodroid.com

Figure 2-14 Testing the Geiger counter

Plug your phone into the Host USB connection of the shield. After a few seconds, this should trigger
the DroidGeiger app to automatically start and begin displaying an average reading. Every time there is
an event, the phone will make a click noise and the radiation symbol on the right will flash.

The average reading is based on the gap between events, which is then smoothed. The algorithm
definitely has room for improvement. Keep an eye on the book’s web site for improvements to this sketch
by the author or other readers.

Once a minute, a new entry will appear in the Log area at the bottom of the screen, showing the
number of events (counts) in the last minute.

Step 12. Box the Project

In selecting a box for this project, it needs to accommodate the battery, the Arduino board, and the shield,
and leave enough room for both the switch and the GM tube.

The box will also need holes in it for the switch, for access to the USB host socket, and four holes
for attaching the Arduino board using four small self-tapping screws (Figure 2-15 and Figure 2-16).

Figure 2-15 The box, drilled

Figure 2-16 The Arduino board fixed into the box

The GM tube itself can be accommodated inside the enclosure as the gamma radiation that it detects
is not much attenuated by a plastic box. To stop it rattling around in the box, a cable-tie can be used to
attach it to the USB shield (Figure 2-17).

A g

b W m

Figure 2-17 The components inside the box

If you get yourself a tube that is sensitive to alpha radiation, you will need to make a hole for the end
of the tube, because Alpha radiation does not penetrate plastic.

The battery is held in place by the USB socket on the Arduino board. All that remains is, as a final
flourish, to print out a paper label for the front of the box (see Figure 2-1). You can find a template for
this on the book’s web site at www.duinodroid.com.

This project uses a small battery. In fact, if you opted to use the small 9V battery, it is really too
small to supply the 500mA charging current that the Open Accessory says the accessory should supply. To
get around this, either just use the Geiger counter when your phone is fully charged, or construct a
“noncharging” lead by splicing a 1kQ resistor into the +5V supply of an unwanted USB extension cable.
This will allow the accessory to work, without the phone being able to draw any significant current from
it.

The following sequence of photos shows the construction of the lead.

Carefully cut away some of the outer plastic with a sharp knife on one side and tease out the shielded
bundle of wires, scrape a gap between the shielding to get at the +5V wire, and cut the red wire and strip
and tin the ends (Figure 2-18).

http://www.duinodroid.com

Figure 2-18 Making a USB nonpowered lead

Solder the 1kQ resistor into place. Then wrap it all up with insulating tape. Wrap the part behind the
tape carefully, so there is no chance of the bare leads from either side of the resistor making contact with
the shielding wires or foil. (See Figure 2-19.)

Figure 2-19 Fixing the resistor in place
You can then use this lead in between your phone and the accessory, on this and on the rest of the
Open Accessory projects in this book.

Theory

The software for this and all the other projects in this book are provided as open source, and you are
encouraged to make your own improvements. The author would very much like to hear about any
improvements you make to the software. Ways to contact the author can be found at
www.duinodroid.com, where you will also find all the source code for both Android and Arduino.

In this section, we are going to have a quick look at the software used in this project, starting with
the Arduino sketch. But, before that, we will look at how we generate the 400V needed by the GM tube.

Generating 400V

The circuit used to generate the 400V relies on the Arduino to generate pulses that drive the inductor via a
high-voltage transistor. The high-voltage pulses are harvested and smoothed by D1, C1, C2, and R2.

The pulses coming from the Arduino are generated from a PWM output. This kind of digital output
from the Arduino is generally used for things like controlling the speed of motors by sending pulses of

http://www.duinodroid.com

varying lengths.
We use the same mechanism to tweak the voltage generated.

The Geiger-Miiller Tube

For a full description of Geiger-Miiller tubes, visit Wikipedia. The basic principal is that the tube has an
outer cathode (negative terminal) and an inner anode (positive terminal) enclosed in a glass envelope
containing a gas. The more expensive “alpha” detecting tubes have a thin mica end that allows the alpha
particles to enter. These are stopped by the glass in the type of tube the author used.

When a particle enters the tube, it ionizes the gas inside, causing a pulse of conduction that can be
detected.

You can see these pulses if you connect an oscilloscope across R4. Figure 2-20 shows this.

Figure 2-20 An oscilloscope trace of events

The timebase of the oscilloscope is set to 500 ms, making the pulses about two seconds apart. The Y
scale is set to 2 volts/division, giving the pulses an amplitude of about 5V. The pulses are extremely
narrow.

The Arduino Sketch

The Arduino sketch is quite straightforward. The Android Accessory library greatly simplifies the
process of sending data to the Android device. The averaging algorithm for the counts per minute has
much room for improvement at low-count frequencies. But it works much better at highcount frequencies,
should you be unfortunate enough to encounter them.

#include <Max3d42le.h>
#include <Usb.h>
#include <Androidhccesgsory.h>

int oscPin = 5;

int op = 45;

int minPulseSep = 50;
long lastEventTime = 03
long lastTimerTime = 0;
long timerPeriod = S5001;
long lastLogTime = 0;
long logPeriocd = &00001;
int count = 0;

float smoochingFactor = 0.6;
float instantanecusCPM = 0.0;
float smoothedCPM = 0.0;

Androldhccessory acc{"Simon Monk®,
"DroidGeiger®,
*Geiger Counter Accessory",
=1.0%,
*http: //www.duinodroid.com®,
*0000000012345678%) ;

vold setupl)
{

Serial.begin(9600];

pinMode (oscPin, OUTFUT):

analogWrite (oscPin, op);:

acc.powercn(];

attachInterrupt(l, eventInterrupt, RISING):
}

void loopil)
{
if" (acc.isConnected())
{
ff every half second, take the instantaneous reading and integrate
/4 it with the average reading, then send it
leng timeNow = millis(};
if (timeBow > (lastTimerTime + timerPeriod))
{
lastTimerTime = timeNow;
integratelnstantReadingIntoSmooth();
sendMessage ('R*, [(int)} smocothedCPM);
1
/¢ every minute, send the accumulated minute total
Eimadow = millis(};
if (timeNow > ([lastLogTime + logPeriod))

lastLogTime = CimedNow;
sendMessage('L', count);
count = 0

delay (100} ;

wold eventInterrupti)
{
f/ set instantaneous Reading
calculateInstantCPMI) ;
COUnk ++;
sendMesgage('E", 0);

|
vold calculateInstantCPM()

foinstantaneous cpm = 60,000 f dt in mS
long timelow millisl);

long dE = timaNow - lastEventTime:

if {(dt > minPulseSep}

[

instancanecusCFM = {(flcat}logPeriod) /[dt;

lagtEventTime = CimaHow:

vold integratelnstantReadingIntoSmoothi)
smoothedCPM smoothedCFM * smoothingFactor

instancaneousCPM * (1 - smoothi ngFactor);

volid sendMessage(char flag, intc cpm)
[

if (acc.isConnecced{]]

te meg(d):
g[0] = O0x04;

= (byte) flag;

= Cpm >> &;

cpm & OxEE;

ﬂCC.N!ite{ﬂEg, 4] ;

We start by including the libraries we need. The Max3124e library is included as part of the USB
host library you have already installed.

There is then a pin definition, “oscPin,” which is for the oscillator signal from the Arduino to drive
the coil to generate the high voltage. Note that there is no pin defined for the pulse signal back when an
event is detected. That is because it is attached to an interrupt on pin 3.

The op variable controls the pulse width, as described earlier in this chapter.

The “long” variables named “last” something are all used to record times. The function millis()
returns a long (32-bit) number representing the number of milliseconds since the Arduino board was
reset. This is used in timer code to determine if certain actions are due.

The variables timerPeriod and logPeriod are constants representing half a second and one minute,
respectively, and are used in the loop code to carry out the periodic actions of sending a regular update to
the Android device (every half second) and sending a count for the minute.

The next three “float” variables are all used in providing an average instantaneous value to send to

the phone.
After defining the variables, the line beginning “AndroidAccessory” sets up the connection between
the phone and the Arduino. The parameters are:

» Manufacturer
= Model

» Description

= Version

m URI

» Serial number

Of these, only manufacturer, model, and version must match with the corresponding entries in the
manifest of the Android project to cause the Android app to launch.

The others may, however, be displayed on the phone.

The “setup” function starts up serial communications. This is not required for the sketch to function;
however, the USB library will report the connection-making progress through this, so if you are having
trouble connecting to your phone, then opening the Serial Monitor may give you some clues.

A couple of other interesting things are going on in the “setup” function. The “acc.powerOn” tells the
phone that the accessory is on and ready. We then attach an interrupt. The first argument is the interrupt
number. Interrupt 1 corresponds to pin 3. Whenever there is a rising signal (0 going to 5V) on pin 3, the
processor will be interrupted and the function “eventInterrupt” will be run.

The loop function first calls “acc.isConnected” that both tests to see if there is a connection and
attempts to establish one if there isn’t. If the accessory is connected, it carries on, otherwise loop does not
do anything.

The loop has two timer mechanisms that perform actions every half second and every minute. The
half-second timer calls a function to update the current average reading and then send an update message
to the phone. This message has an identifier “R” that is used when it is received at the phone, along with
the smoothed value.

The one-minute timer sends a logging message (“L” identifier) and the count that has accumulated
during the previous minute. Once the message has been sent, the count is reset to O.

As we mentioned before, we use interrupts to call the “eventInterrupt” function every time the GM
tube receives an event. This function updates the “instantaneousCPM” variable, increments the minute-
wise count, and then sends an event (“E”) message. The event message does not send an updated reading,
but just notifies the phone so it can make the classic Geiger counter click and flash the radiation symbol.

The “sendMessage” function formats the message and then sends it. The message is packed into four
bytes. The first byte is an identifier for all messages coming from this accessory (0x04). The second byte
contains the flag, which will either be “R”, “E”, or “L”, depending on whether the message is a
“Reading,” “Event,” or “Log” message. The final two bytes are the 16-bit integer for the reading.

The Android App

The Android app is too big to be listed in full here, so if you are interested, you are encouraged to
download the source from www.duinodroid.com. Let’s now have a look at the key parts of the code.

One nice feature of the Android ADK is being able to cause the phone to launch an app in response
to an Arduino accessory being plugged in. This is entirely accomplished by configuration in the
AndroidManifest.xml file for the project.

http://www.duinodroid.com

This is the key section of the manifest.

<activity android:name="org.simonmonk
.geiger.UsbAccessoryihetbivity"
android:label="DroidGeiger"
android:taskAffinity=""
android: launchMode=
"singleInstance">
zintent-filter>
<action android:name="android
Jhardware.usb.action.USE_
ACCESSORY _ATTACHED" /=
</intent-filter>
<meta-data android:name="android
.hardware.usb.action.USB_ACCESSORY
ATTACHED"
android:rescurce="8xml /faccessory_
filter" />
<factivity>

The accessory filter determines which accessories qualify to launch this app. The filter for this app
is as follows:

<resources>
<ush-accessory manufacturers
"Simon Monk® model="DroidGeiger"
version="1.0"/>

< /resources:>

In other words, only launch the app if the manufacturer, model, and version sent from the Arduino

device all match those values set.
Let’s now follow the path that a message coming form the Arduino would take.
Looking in the “run” method of the DroidGeigerActivity class, you will find the following fragment

of code:

case Oxd:
if {len == 3} {

Message m = Message.obtain
{mHandler, MESSAGE TEMPERATURE) ;
char flag = (charlbufferfi + 1];
int cps = composeInt (buffer[i + 2],
buffer[i + 31});
m.obj = new GeigerMsg(flag,
countsPerfuarter) ;
mHandler . sendMessage (m) ;

b

i += 4;

break;

This method decodes the raw message coming from the USB connection and creates a message
object to send to a Handler. Handlers are Arduino’s way of allowing you to interact with the UI thread.

As shown in the following code snippet, the Handler will invoke the handleGeigerMessage method
on the InputController class:

public wold handleGeigerMessage
(char flag, int reading) {
if (flag == *E*Y &
mRadiationImage. setVisibility
{ ImageView.VISIELE) ;
mp.start();
}
else if {flag == 'R'} {
mRadiationImage.setvVisibility
{ImageView. INVISIBLE) ;

mTemperature. setText (""" + reading);
1
elze 4f (flag == "L') £

String logText = mLogView

.getText{).toString(};

String timeFormatted = (String)
DateFormat. format {"hh:mm", new
Datel{)]);

mlogWView. setText {logText + *i\n* +
timeFormatted + ®"“EMNEMNE® +

reading) ;

This makes the necessary changes to the user interface depending on the message flag.

Summary

There are many ways that this project could be extended. For instance, the Android app could, with a
little work, be made to send the logged data over the mobile network, allowing remote monitoring.

It could also post readings to a web server.

This is a basic app and it is hoped that readers will take this further and do all sorts of interesting
things with it.

In the next chapter, we look at another open accessory project: This time, a light show accessory—
because the Evil Genius does love to party!

CHAPTER 3
Android Light Show

BRIGHT FLASHING LIGHTS are great for disorienting your enemies. But even more importantly, the Evil
Genius likes to dance, and can often be seen boogieing about the Evil Genius Lair to the latest disco beat,
lights flashing away to provide atmosphere.

Occasionally, the minions are ordered to round up some guests for these parties, and the Evil Genius
likes to impress such audiences with a demonstration of his Android phone—controlled light show.

Once the phone is docked into its light show Android Accessory (Figure 3-1), with a press of his
finger the Evil Genius can adjust his fabulous light show.

Figure 3-1 The light show accessory
The control application for the light show is shown in Figure 3-2.

' Bargraph

(-)Beat

Figure 3-2 The light show app

The light show accessory uses three LED boards, each of which has 36 LEDs. The boards are each a
different color: red, green, and blue. The brightness of each LED panel can be
controlled independently from the Android app that monitors the sound level through the phone’s
microphone and flashes the light accordingly.

Construction: The Droid Accessory Base

Like the Geiger counter, this is another Android Open Accessory project. However, this time, because we
only have a few components aside from the Arduino, we are going to convert a USB host shield to be the
basis of an off-board Arduino. In other words, we are going to use the Arduino to program the
ATMega328 microcontroller and then transfer it onto an IC socket on the shield itself, meaning we can
keep the Arduino for another project.

This is a bit like making our own Arduino on a USB host shield and just bringing the few Arduino
pins we need for this project out onto a six-pin socket. It will give us three PWM pins and one general 10
pin. The complete Droid Accessory Base is shown in Figure 3-3.

v ™ N ow W

000000

]

©
’Q}i‘

L

HHTEH

(1] '4: .r-...
00y

Onx
Q=
gz
3
or”

Figure 3-3 The Droid Accessory Base
We’ll use this as the basis for this project and the next three that follow.
The schematic diagram for the project is shown in Figure 3-4.

51 -
[&]
T
Vin AT 7
1
D7 13
i
pa 14 = 02
e los 15 - » 03
]
! 12
. USE Host (D10 16 IC1 B 0E
i Shield ATMeqgadzs
I 11
—— D11 i7 - D5
mr—
D12 18 —= GND
o1 19 10 |J-:1
c1
C———— s
[==C2]
b 2]a] o ‘g;‘”’ 22pF
==
|22pF

Figure 3-4 The schematic diagram

As you can see from the schematic, we only need a minimum set of other components to allow the
microcontroller chip to work on its own without the Arduino board. We need a crystal oscillator, a
resistor, a couple of capacitors, and that’s it.

What You Will Need (Droid Accessory Base)

The following Parts Bin is for the “Droid Accessory Base,” as we will call this module. To make the
light show, you will also need the other components listed in the section for constructing the project itself.

PARTS BIN

Part

Arduino Uno

LUSB shield

Guantity

Description

Arduing Uno board (for programming)

Arduino USB Host Shield

Source

www.arduino.ce

Sparkfun: DEV-09947

1
|
Microcontroller | ATMega328 with bootloader Sparkfun: DEV-10524
RI 1 1KLY 0.5W metal film resistor Farnell: 9339779
cl,c2 2 22pF ceramic capacitor Farnell: 1600966
Xl | 16-MHz crystal Farnell: 1611761
IC socket | 28-pin DIP IC socket Farnell: 1824463
Socket 1 H-way header socket
Box 1 Small project box R5/ocal electronics storg
Switch | SPST miniature toggle switch Farnell: 1661841

In addition to these components, you will also need the following tools in the Toolbox.

TOOLBOX

L

» Soldering equipment

» A computer to program the Arduino
» A USB-type A-to-B lead

L

Step 1. Solder the IC Socket in Place

In this project, most of the wiring is going to be on the underside of the board, so rather than start with the

wire links, we can solder the IC socket into place. This has the great advantage of making it easier to
locate the positions for link wires relative to the IC socket.

The wiring plan for the prototype board is shown in Figure 3-5.

T
1

GND
Mﬂ-” cl=iel= GND
_—Nm-:rr-‘m“ 7 b2
fipgfP AL N \JTe b3

| A ﬂ.‘}‘ De*
eyfﬂj Ds"

Figure 3-5 The wiring diagram
The board with the IC socket in place is shown in Figure 3-6.

o
— ct (@]
i Povernd O

AW E"l'.ﬁ! —r-zzo
T4 D

Gl

win O

6o Oy

- @
N
=

Il_'l.l.lﬂ

- Reser GNDAO)

. 7.1

- =) | i
SNl

Figure 3-6 The shield with the IC socket in place

Place the IC socket so that the notch indicting the location of pin 1 is as shown in Figure 3-5. You
only really need to solder the IC socket pins that are used.

corner first to keep the socket in place.

Step 2. Attach Link Wires for the USB Shield

Next, attach the link wires between the pins that would attach to the Arduino (if we were using one) to the
IC socket, where the Arduino’s processor will eventually reside. Use Figure 3-5 and Figure 3-7 as a

reference.

”:H\O

990060 000000

Figure 3-7 The shield with link wires attached

O USB Host Shield

: en0O0O00000
"w@ooaoooo

()80 00
)0 00000
20000
20200

00
00

¥

= g gm
) L

20
=

00000000
00000000

TGO
o B o e

L8

'R

It is also a good idea to solder one from each

749320600000"
000V00000000 ©
0000000000000

' 90000000000 *

Do# 00
00000000

This is a little fiddly. Cut the wires to the right length and strip off a short length of insulation from
each end, then solder each wire into place, making sure there are no solder bridges to other pins of the IC.

Step 3. Fit the Crystal and Other Components

We now return to the top side of the board and solder in the crystal X1, the two capacitors, and the
resistor. See Figure 3-8.

B Host Shield

uin D
enn)

,w}CJJDDDODOG
00 2 o0
005
Q00
00
oor
O
00
00 ¢
00 |
00

—

(AR AR

Os .
-"t:?'

Figure 3-8 The top side components in place

Solder the component leads at the hole through which they enter the board, but do not snip off the

excess leads. This will allow you to bend them into position so they can form the connections between the
components. Use Figure 3-5 as a reference when doing this.

We can also take the opportunity to solder the six-way socket, to which we will attach our
accessories.

The end result should look something like Figure 3-9.

0000000 ({1 1e WO (g

[

de Q0" . 00O
0e00e00o0
0oe00e000
0e00€e000
0e0028000
0000C0« 4
0« OG- 14
oe00*. O
14.007 4. 00
L O 00« f‘\ €.
7+ 008000
D% 00« 200
Jv 20¢ 30
'__ 1."\"&0
00000000

996000 000000

Figure 3-9 Connecting the components underneath the board

Step 4. Fit the Remaining Links

We can now return to the underside of the board and make the remaining links to the six-pin connector and

the ground connection.
The end result is shown in Figure 3-10.

e

e y

®000000% ¢

—%
'

" &0 00000%

}
b
(o
O
di O
(8]
o
.I \1
.)) l"l

o

Figure 3-10 Fitting the remaining link wires

Step 5. Connect the 5V Supply

Since we do not have an Arduino board to supply us with the 5V, we must get the 5V supply from the
shield. We get this by carefully soldering a lead between the middle pin of the large voltage regulator and
the side of R1 that connects to pin 7 of the IC (Figure 3-11).

e 50
E"D

p Bouer s)
1t

ﬂ.' 1

S
ﬁé — &
I

Ox
Dz

3o
o

Figure 3-11 Attaching the 5V supply

Step 6. Connect the Switch and Power Leads

All that remains for us to do to complete the Droid Accessory Base is to attach the switch and power
leads (Figure 3-12).

Figure 3-12 Attaching the switch and power socket

The Droid Accessory is used in both battery-and AC adapter—powered projects. So for now, we
will attach a switch and two leads. Those leads can then either be connected to a battery clip, or as is the
case with the light show project that follows, a power socket.

Step 7. Test

There are a lot of connections, all close together in this project, so take some time to inspect the board
and make sure you have made all the connections as described in Figure 3-5 and that there are no
unwanted solder bridges.

We will eventually use the light show project to test this, but we can get a basic sanity check by
installing the Droid Geiger sketch onto an Uno and then carefully easing the microcontroller IC off the
board and fitting it onto the IC socket on the shield. Be very careful not to bend the leads on the IC socket,
because it is easy to snap them off.

Also, make sure you put the IC the correct way around, with the notches on the IC and the IC socket
lining up.

Hold or clip the connections from a 9V battery to the power leads from the Droid Accessory Base
and plug the USB lead into your fully charged Android phone. If you installed the Droid Geiger app for
the project in Chapter 2, it should be launched, although you will obviously not get any readings.

If the Droid Geiger app is not installed, you should get a popup message telling you that you can get
it from this book’s web site.

In both cases, this is a good sign.

Construction: The Light Show Project

Now that we have made our Droid Accessory Base, the rest of this project (and the next three projects)
are relatively straightforward.
The schematic diagram for the project is shown in Figure 3-13.

03 -
- e -

Figure 3-13 The schematic diagram for the light show itself

The project uses the three PWM pins of the Droid Accessory Base. It uses pin D5 to control the red
LED module, D6 to control the green, and D3 the blue. Each of these pins drives a MOSFET transistor to
control the power to the LED modules since they use too much power to be driven directly from the
microcontroller.

What You Will Need (Light Show)

The following Parts Bin is for the actual light show accessory. It assumes you have already built the
Droid Accessory Base described earlier in this chapter.

PARTS BIN

Fart Quantity Description Source

Droid Accessory Base I See the start of this chapter

R1-3 3 1LY 0.5W metal film resistor Famell: 9339779
Ti1-3] FOQP33N10 MOSFET transistors Farnell: 9845534

D1 I Red LED Module {see fater) eBay

D2 l Green LED Module (see later) eBay

D3 I Blue LED Module (see later) eBay

Perfboard I 20 by 10 holes Farnell: 1172145
Socket header I Six-way 0.1-inch header socket strip Farnell: 1218869
Screw terminal | Two-way 0.2-inch (3mm) spacing Famell: 1641932
Project box I Large project box Local electronics store
Power socket | 2. 1lmm power socket Farnell: 121703

Power adapter I 12V 1.5A power supply Local electronics store

The LED modules are each made up of 36 high-brightness surface-mount LEDs. They are designed to
be powered from 12V. They have handy self-adhesive backs that we will use to stick them to the box.
You can, however, use any 12V DC LED modules for the lighting, and the transistors should cope easily
with up to 10 watts per channel, although be aware that you would need a much bigger power supply to
cope with this. If you do not pick LED modules with 0.1-inch header pins as connectors, you will need to
use a different connector arrangement.

In addition to these components, you will also need the tools in the Toolbox.

TOOLBOX

l} 1

» Soldering equipment

» An electric drill and assorted drill bits
» Small self-tapping screws

» A computer to program the Arduino

» A USB-type A-to-B lead

L 4

Step 1. Make a Droid Accessory Base

See earlier in this chapter.

Step 2. Cut the Perfboard to Size

Cut a small piece off the perfboard that is 20 holes by 10. The best way to do this is to score the board
with a craft knife and then break it over the edge of your bench.
Figure 3-14 shows the perfboard cut to size.

Figure 3-14 The perfboard cut to size
The idea of perfboard is that you push components through from the top and solder them up
underneath, connecting them together with their leads and, where necessary, extra lengths of wire. Figure

3-15 shows how we will lay out the components on the board.

Screw Terminal

12V GND
® O @
d
Red i _1_ _1_ _l_ GND
5
® D2
Green 9 D E 03
: D6
Blue L /
e = w e . ___—® D5

Socket Header Pin Header

Figure 3-15 The perfboard layout

Step 3. Attach the Socket, Screw Terminal, and Transistor

The tricky bit in using perfboard is getting everything to hold together. A good starting point is to place
the header socket, the screw terminal, and one of the transistors onto the board (Figure 3-16).

!

B B B R

Figure 3-16 Attaching the first components
Figure 3-17 shows the underside of the board. You can see that the leads of the transistor just bend
far enough to reach one contact of the screw terminal and one of the header sockets.

Figure 3-17 The underside of the board with the first components attached

Step 4. Solder the Remaining Components

We can now attach the rest of the components. It is easiest just to put all the remaining transistors and the
resistors into their correct places on the board and then bend the component leads in the right directions
for them to be connected together, and then solder them up.

Figures 3-18 and 3-19 show the top and bottom of the board after everything is soldered together.

The pin header only uses four of the connections, one for ground, and three connections that go to R1
to R3. You can see from Figure 3-18 how the resistor leads are threaded through the perfboard, first down
and then back up, to make a connection to the pin header on the top of the board. Only the nearest resistor

to the header is likely to have a lead long enough to reach the pin header. The other two will need to be
extended with some wire.

B RBES S S56600000 0 0
_ ﬁ-ﬁaﬁa{"j\‘t_}(_, .0 1hp ©® Gy @
) :1; S L Yy ol %ﬂ) '—‘; ¥)
| Seprd O ®)’ § ;

A0

Figure 3-18 The top side of the completed board

Notice the zigzagging wire shown on the right-hand side of Figure 3-19, which connects the positive
supply terminal to the three positive connections for the LEDs. It is best to bend the wire to the correct
shape and then solder it into place.

Figure 3-19 The bottom of the completed board

Step 5. Connect Everything Together

Figure 3-20 shows how everything is connected together.

Figure 3-20 Connecting everything together

Be very careful to get the connectors to the LEDs the correct way around.

As you can see from Figure 3-20, another wire has been soldered from the switch and screwed into
the positive terminal on the perfboard.

We also need to take the flying leads from the Droid Accessory Shield and attach a 2.1mm power
socket so we can connect our 12V DC adapter to the board (see Figure 3-20).

Step 6. Install the Arduino Sketch

To get the sketch onto the microcontroller, we’ll first program the chip and then carefully take it off the
Arduino board and fit it onto the socket on the Droid Duino Base.

The sketch uses the same libraries as the projects in Chapters 2 to 5, so if you have not completed
one of these chapters, refer to the instructions in Chapter 2, Construction Step 6 (“Install the Open
Accessory Libraries”).

The sketch is called “ch03_light_show” and is included in the zip file containing all the sketches in
the book that can be downloaded from www.duinodroid.com. See Chapter 1 for details.

Once the sketch is installed on the microcontroller, carefully remove the microcontroller chip,
levering each end up a little at a time so as not to bend the pins. Then seat it onto the Droid Accessory
Base, making sure you have it the right way around.

Step 7. Install the Android App

If your phone has an Internet connection, you can skip installation of the Android app and wait until the
phone’s Open Accessory software asks for it the first time you connect the light show accessory.

http://www.duinodroid.com

Otherwise, visit www.duinodroid.com and download the APK installer.
If you have any trouble with this, read through Chapter 1, Construction Step 10.

Step 8. Test

The time has come to test our project. The sketch starts the accessory in its “test” mode, so even without
connecting our phone, we can see the LEDs in action, by plugging in the 12V supply.

Next, we can plug in the phone. This project also acts as a charging station for the phone, so while
the lights are flashing, the phone will also be charging.

When the phone is plugged in, it should launch the Duino Light Show app.

Step 9. Box the Project

The project fits into a project box big enough to act as a base for the three self-adhesive LED panels. The
phone is attached with a USB lead fitted inside the case.

Figure 3-21 shows the box drilled with holes for the switch, the USB lead, the power socket, and the
three holes for the LED modules.

Figure 3-21 The project box, drilled
Now, attach the shield to one of the pillars in the plastic box with a small self-tapping screw, and fit
the switch and power socket (Figure 3-22).

http://www.duinodroid.com

Figure 3-22 Attaching the switch and power socket

Finally, we can fix the self-adhesive LED panels to the side of the box and thread the wires through
to connect to the pin headers.

Make sure the LEDs are connected the right way round, and that the leads are long enough to reach
the connector before you remove the self-adhesive pads (Figure 3-23).

Figure 3-23 Attaching the LEDs

Using the Project

The project has three modes. It has the test mode that just cycles the LEDs even if no phone is connected

to the accessory.

Once you put it into “Bargraph” or “Beat” mode, the device becomes sound-sensitive. It uses the
phone’s microphone and will therefore be responsive to both sounds played by the phone’s Music player
and external sounds. So you might like to plug the audio jack of the unit into an amplifier.

The sensitivity of the unit is adjusted using the “gain” slider.

Theory

The software for this and all the other projects in this book are provided as open source and you are
encouraged to make your own improvements. The author would very much like to hear about any
improvements you make to the software. Ways to contact the author can be found at
www.duinodroid.com, where you will also find all the source code for both Android and Arduino.

In this section, we’ll have a quick look at the Arduino sketch. But before that, we’ll explore how to
use MOSFET:s to turn the LEDs on and off, and quickly discuss pulse width modulation.

MOSFETs

MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) are a type of transistor that is excellent
for switching high currents. When they are turned fully off, they have a huge resistance, and when they are
on, they have a very low resistance. This means that they generate very little heat, when used as a switch
that is either fully on or fully off.

Since we are using pulse width modulation (see the next section) to control the brightness of the
LEDs, this works really well—with very little power wasted as heat when controlling the brightness of
an LED.

They differ from more normal “bipolar” transistors in that they are controlled by voltage rather than
current. In other words, it is the voltage at the “gate” connection of a MOSFET that determines whether it
turns on or not. Only a tiny current flows into the gate, making them ideal for switching from low-current
sources like the Arduino.

The MOSFETs we will use are called logic-level MOSFETSs, because the gate voltage needed to
turn the MOSFET on is less than 5V, and therefore the MOSFET can be turned on and off directly from
the Arduino pins.

Pulse Width M odulation

Pulse Width Modulation (or PWM) is a technique for controlling power. We first used this on the project
in Chapter 1, to control the speed of the motors using the Arduino’s “analogWrite” function. We also use
it here to control the brightness of the LED modules.

Figure 3-24 shows the signal from a PWM pin on the Arduino.

http://www.duinodroid.com

1/500 second

-

5V
_H H H 1/20 (5%)
ov
5V p—
| 10720 (50%)
ov

5V

_I H U 18/20 (90%)
ov

Figure 3-24 Pulse Width Modulation

The PWM pin is oscillating at about 500 Hz, with the relative amount of time that the pin is high
varying with the value set in the “analogWrite” function. So, looking at Figure 3-24, if the output is only
high for 5 percent of the time, then whatever we are driving will only receive 5 percent of full power. If,
however, the output is at 5V for 90 percent of the time, then the load will get 90 percent of the power
delivered to it.

When driving motors with PWM, the physical inertia of the spinning motor means it does not start
and stop 500 times per second, but is just given a kick of varying strength every 500th of a second. The
net effect of this is smooth control of the motor speed.

LEDs can respond much more quickly than a motor, but the visible effect is the same. We cannot see
the LEDs turning on and off at that speed, so to us it just looks like the brightness is changing.

The Arduino Sketch

The sketch for this project is pretty straightforward. It differs from the previous project (the Geiger
counter) because it is more concerned with receiving commands from the accessory. Whereas in the
Geiger counter project, the communication was in the other direction.

showColors();

dalay(cycleTime) ;

woid changeColors()

red ++;

if (red > 255) red

jraan

if (greem > 255) green = 0;
bBlug ++;

1f (blue > 255} blua = 0;

analogWrite (radPin, red):
.-l.:'la.-‘.!'.'l’.-l.";i.'i:".:.-'*[g:'l-:l.'.-.".i‘il‘:. green} ;

analogWrite (bluaPfin, blua);

We start by including the libraries that we need. The Max3124e library is included as part of the
USB host library you have already installed.

We then have a constant “cycleTime” that is used when the accessory is in test mode. This sets the
time period for the delay between changes to the colors.

The next three variables contain the brightnesses for the red, green, and blue LEDs as a value
between 0 (off) and 255 (full on).

After defining the variables, the line beginning with “AndroidAccessory” sets up the connection
between the phone and the Arduino in the same way as the Geiger counter sketch.

The “setup” function starts up serial communications and initializes the output pins.

The loop function calls “acc.isConnected” and then checks for incoming messages using the
“acc.read” function. The first byte of the message is the code for the type of message. A value of “1” sets
the red brightness, “2” sets the green, and “3” the blue. The codes “4” and “5” turn the test mode on and
off, respectively.

Most of the rest of the sketch is concerned with the “test” mode. This cycles the brightness of each of
the LEDs from 0 to 255. Each LED has a different starting brightness.

The Android App

The Android app is too big to be listed in full here, so if you are interested, you are encouraged to
download the source from www.duinodroid.com. We will have a look at the key parts of the code next.
Much of the Android app is similar to that of the Geiger counter app, so the curious might like to
refresh their memories using the description of this in the “Theory” section of the previous chapter.
As with the Arduino sketch, the main difference is in the direction of communication. So for this
project, it is the Android device that sends the message to the Arduino. The relevant section of code is
shown next:

http://www.duinodroid.com

public woid sendCommand{byte command,
byte target, int wvalue] {
byte[] buffer = new byte[3]:

i1f {wvalue > 255} walue = 255;
buffer[0] = command;
buffer[l] = target:
buffer[2] = (byte) walue;
if (moutputsStream != null &%
buffer[1] != =1} {
Erze

moutputStream.write{buffer) ;
} catch (I0Exception e} |

Log.e(TAG, “write failed”, e);

This code can be found in the class DroidSoundDisplayActivity. The message is constructed as a
three-byte array that is sent to the USB output stream.

To sample the sound, we employ a much-passed-around GPL library used in the Blinkendroid
project. The two classes used can be found in the package “org.cbase.blinkendroid.audio” and provide a
neat callback mechanism that returns a section of sampled data. This is then analyzed by the class
“Visualizer” that takes the sample and determines which messages to send to the Arduino.

Summary

That completes the second of our Open Accessory projects and the first using the Droid Accessory Base
module we created. This will form the basis of the projects in the next three chapters.

CHAPTER 4
TV Remote

THE LIFE OF A MINION is a short brutal affair in which the minions must take pleasure where they can.
One popular amusement of the Evil Genius’ minions is to hide the remote control for the TV. Even severe
punishments are not sufficient to deter the minions from indulging in this dangerous pastime.

In light of this, the Evil Genius decided to invent a project that would allow him to use his Android
phone and a clever little accessory project to let him regain control of the TV whenever he wishes (see

Figure 4-1).

RE}IIID'GG Jﬂ @

Figure 4-1 The TV remote Android accessory
The Android control software for the project is shown in Figure 4-2.

TV an/ off

TV volume UP

TV volume DOWN

TV channel UP

TV channel DOWN

Blueray Play

Blueray pause

Figure 4-2 The TV remote Android app

The software allows eight buttons to be programmed that can send commands over IR. These
commands can be used for different appliances as well. Thus, the remote can be “trained” from a number
of different remote controls so it will work as a “universal remote.”

Construction

If you have constructed the Droid Accessory Base from Chapter 3, there is really very little construction
to do since the few components can be attached to a small piece of stripboard.
The schematic diagram for the project is shown in Figure 4-3.

av

sh——
*
I
I
v .
: Drroid Accessory Base .
I

GHND

GND

Figure 4-3 The schematic diagram

The project uses all of the IO pins on our Droid Accessory Base. It employs D3 to drive the IR
transmitter, and the IR receiver chip uses pins D6 and D2 to provide the GND and positive supply to the
IC. Pin D5 receives the IR signal from the receiver IC.

What You Will Need

In addition to an accessory-capable Android phone (Android 2.3.4 or later) and all the components
required to make the Droid Accessory Base, you will need the components shown in the Parts Bin.

PARTS BIN
Part Quantity Description Source
Droid Accessory Base | See Chapter 3 for parts and building instrictions
R1 I 10042 0.5W metal Gilm resistor Farnell: 9339760
R Optional k£ 0.5W metal film resistor Farnell; 9339779
D1 | Smm IR transmitter LED, 940nm Farnell: 1020634
IC1 I 940nm IR receiver IC Farnell: 4142822
Battery clip I 9V battery clip Farnell: 1183124
Stripboard 1 Eight strips each of six holes Farmell: 1201473
Header pins I Six-way header pin Farnell; 1097954
Case | Plastic case Local hardware store

If you plan to make the noncharging USB lead, you will also need a 1kQ2 resistor, and an old USB
extension lead. See Chapter 2 for details on how to make this lead, which will prevent your mobile phone
from draining your accessories’ batteries.

As a longer-lasting battery alternative, you can use a holder that will accept six AA cells to supply
the project at 9V.

In addition to these components, you will also need the following tools.

TOOLBOX

» Soldering equipment

» An electric drill and assorted drill bits
» Assorted self-tapping screws

» A computer to program the Arduino

» A USB-type A-to-B lead

Step 1. Make a Droid Accessory Base

This is the unit described in Chapter 3 that is comprised of a USB host shield, an ATMega328
microprocessor programmed in your Arduino, and a few other components.

Step 2. Cut the Stripboard to Size

Cut the board to the right size. The neatest way to do this is to score the board heavily with a craft knife
and then break it over the edge of a table. You can also use a strong pair of scissors, but the result will not

be as neat (Figure 4-4).

Figure 4-4 The stripboard cut to size
The stripboard does not require any breaks to be made or links to be made. The layout is shown in

Figure 4-5. Note that the layout is shown both from the copper and component sides of the board. It is
shown this way because the header strip will emerge from the non-copper side of the board to fit into the
Droid Accessory Base so that the board is fitted upside down onto the Droid Accessory Base, with the IR
LED and IR receiver facing outwards.

Copper side of stripboard Component side of stripboard
123456+ 12346586
GND g 05" &
GND @ DE @ IC1
Dz @ D3 -
D3 @ 0z @
Dg” @ IC1 GND @

" o -
123456 123458
I
Wourt Voo
GMND

Figure 4-5 The stripboard layout

Step 3. Solder the Components

Only the three components and the header strip need to be soldered to the board.
Make sure the IR LED is the correct way around. The longer positive lead should be the one that is
connected to one of the resistor’s leads (Figure 4-6).

Figure 4-6 The completed stripboard

Step 4. Wire Up

The stripboard is shown attached to the base in Figure 4-7.

S000000

Figure 4-7 The stripboard attached to the base
You will also need to solder a battery clip to the Droid Accessory Base and switch as shown in

Figure 4-7.

Step 5. Install the Arduino Sketch

To get the sketch onto the microcontroller, we are first going to program the chip and then carefully take it
off the Arduino board and fit it onto the socket on the Droid Duino Base.

This sketch only uses the Android libraries. See Step 6 of Chapter 2 for instructions on installing the
Android libraries into your Arduino software.

We can now install the sketch (ch04_tv_remote) onto the Arduino board. Then, with the power
disconnected, carefully remove the IC from the board and fit it into the socket on the Droid Duino Base,
making sure it’s the right way around.

Step 6. Install the Android App

If your phone has an Internet connection, you can skip installing the Android app and wait until the
phone’s Open Accessory software asks for it, which is when you first connect the TV remote accessory.
Otherwise, visit www.duinodroid.com and download the APK installer for this project.

If you have any trouble with this, go back to Chapter 2, Step 10.

Step 7. Test

It is always a good idea to test your project before you fit everything into a box. So, connect everything
up, as shown in Figure 4-7.

Turn on the switch and it should cause the phone to either launch the Droid TV Remote app, or if it is
not installed, to display the URL from where it can be downloaded.

Note also that for this project the Duino Droid Base has a 9V battery clip connected to the power
leads.

In this project, the Android phone does little more than act as a keyboard, passing through commands
to the Arduino. Even the training of the remote and the storing of the codes is done on the Arduino device.
So, we need to start by training the remote with a command from one of our conventional remotes. To do
this, we need to first select a button that we want to program (by pressing it), then click the Menu button
and select the Program option. Hold the remote near the IR receiver and press a button. If the code is
received, then the app should notify you the code has been saved.

Whenever you program the remote in this way, it will program the last button that was pressed.

Now aim the remote at the device that the original remote controls and press the first button on the
remote. This should have the same effect as the original remote.

Turning the device to standby is always a good button to start with. Note that the IR transmitter is not
as bright as a regular remote, so you will have to get closer to the device than with the original remote.

You can often see the IR LED if you view it through a camcorder or digital camera, so if you are not
sure whether the remote is sending a code, you can check it using this method.

Step 8. Box the Project

The process of boxing this project is very similar to the two previous projects. First, lay out the
components in the box (Figure 4-8), and then work out what holes you will need where and how big they
should be.

http://www.duinodroid.com

Figure 4-8 Laying out the components in the box
You will need holes for:

» The USB cable

» The screws in the base of the box to hold the board in place
» The switch

» The IR receiver and transmitter

Using the Project

You can change the label of any of the buttons by doing a “long touch” of the button (pressing and holding
it for a second or two). This opens the settings screen where the name can be edited (Figure 4-9).

Figure 4-9 Editing a button name

Theory

In this “Theory” section, we will look at how IR remote controls work.

IR Remote Controls

Infrared remote controls send commands as a stream of pulses. Those pulses are modulated at a carrier
frequency that is around 40 kHz. Figure 4-10 shows the waveform of a typical message.

Figure 4-10 The oscilloscope trace of an IR message

The lengths of the codes vary between 12 and 32 bits. A “1” is usually indicated by a “mark” (LED
sender on), and a “0” by a space (LED off). The remote will often repeat the message a number of times
when a button is pressed.

Standards are definitely a concept where less is more. Unfortunately, in the world of IR remotes,
there are many standards. This makes it more practical to record the signals you wish to send than to try
and synthesize them knowing the make and model of the appliance. There are just too many different
variations of code.

Summary

Now that the Evil Genius can control his TV from his phone, his next project is to create another Open
Accessory device. This time, a temperature logger that records temperatures and has them wirelessly
logged to the Pachube telemetry site.

CHAPTER 5
Temperature L.ogger

THE EvVIL GENIUS HAS A CAT (this is to be expected). He is very fond of this cat and is concerned about
the animal’s well-being. So, he required some reassurance that the lair was warm enough at night for his
feline. He therefore decided to build this particular project, which would log the temperature in the cat’s

suite (Figure 5-1).

On
Temperature lm' @
Logger ‘
off

Figure 5-1 The temperature logger Android accessory
The Android control software for the project is shown in Figure 5-2.

| ———
E| Send'to Pachube

Readings

09:58:21 29.0
09:57:19 2B.5
09:56:17 28.7
09:55:15 28.5

Figure 5-2 The Android Temperature Logger app
An interesting feature of this temperature logger is that it also uses the Android phone to transmit the
readings it takes every minute to the Pachube web site, where you can do all sorts of clever charting and

analysis (Figure 5-3).

1 215 [2

™
24H
1H

temperature

Figure 5-3 The Pachube web site

Construction

Once you have constructed the Droid Accessory Base from Chapter 3, there is really very little

construction to do. In fact, there is hardly any soldering to perform at all. The biggest task is probably to
put the project in a box.

The schematic diagram for the project is shown in Figure 5-4.

51
o
D
— From above
I
i +5Y (@] +5v
: Droéd Accessory Base o Ou
I D2 [Tell| *| GND
DS18820
D518820
GHND GND
GND
GHD

Figure 5-4 The schematic diagram

The project uses just three of the IO pins on our Droid Accessory Base. It uses pin D2 as a digital
input from a temperature sensor and D6 to supply power to the sensor.

The temperature sensor used in this project is a very interesting device. It combines a temperature
sensor and a processor that sends the temperature in digital form. This allows it to be positioned a
distance away from the Arduino, without the length of the wire causing problems with the accuracy of the
temperature measurement.

What You Will Need

In addition to an accessory-capable Android phone (Android 2.3.4 or later) and all the components
required to make the Droid Accessory Base, you just need an ultrasonic range finding—module, a laser
module resistor, and a few connectors. See the Parts Bin on the next page.

PARTS BIN

Part Guantity Description Source
Droid Accessory Base I See Chapter 3 for parts and

Iuilding instructions
RI1 I 4.7k1L2 0.5W metal film resistor Farnell: 9340629
R Optional 1k 0.5W metal film resistor Famell: 9339779
IC1 1 DSIRB20 SparkFun: SEN-002435
Screw terminal I Thre¢-way screw terminal Farnell: 1641933
Battery clip I 9V battery clip Farnell: 1183124
Case I Plastic case Local hardware store

The only electronic components in this project are the temperature sensor chip and a single pull-up
resistor.

If you plan to make the noncharging USB lead, you will also need a 1k resistor and an old USB
extension lead. See Chapter 2 for details on how to make this lead, which will prevent your mobile phone

from draining your accessories’ batteries.

As a longer-lasting battery alternative, you can use a holder that will accept six AA cells to supply
the project at 9V.

In addition to these components, you will also need the following tools listed in the Toolbox.

TOOLBOX

L

» Soldering equipment

» An electric drill and assorted drill bits
» Assorted self-tapping screws

» A computer to program the Arduino

» A USB-type A-to-B lead

L

Step 1. Make a Droid Accessory Base

This is the module described in Chapter 3 that is comprised of a USB host shield, an ATMega328
microprocessor programmed in your Arduino, and a few other components. Follow the instructions in
Chapter 3 to construct this.

Step 2. Attach the Components to the Screw Terminal

As we have so few components in this project, the temperature IC and resistor can be attached to a screw
terminal (Figure 5-5) that can be plugged directly into the socket connector on the Droid Accessory Base
(Figure 5-6). Make sure the small three-pin IC is the correct way around. The flat side of the chip should
be facing upward.

Figure 5-5 The screw terminal

Powear +8V

—

Power GND

3
3

X a IC 1 flat side to top
e '
; .
s

Figure 5-6 The wiring diagram

Step 3. Install the Arduino Sketch

To get the sketch onto the microcontroller, we are first going to program the chip and then carefully take it
off the Arduino board and fit it onto the socket on the Droid Accessory Base.

This sketch makes use of two libraries for the temperature module (One Wire and Dallas
Temperature).

The procedure for installing a library is the same as for all libraries (see Chapter 1). You can

download the OneWire and Dallas libraries in a single zip file from
www.hacktronics.com/code/OneWire-v2.zip.

So, just install the sketch (chO5_temp_logger) onto the Arduino board. Then, with the power
disconnected, carefully remove the IC from the board and fit it into the socket on the Droid Duino Base,
making sure it’s the right way around. The easiest way to remove the IC is to gently lever it up from each
end in turn, a little at a time, using a small screwdriver.

Step 4. Install the Android App

If your phone has an Internet connection, you can skip installing the Android app and wait until the
phone’s Open Accessory software asks for it, which will be when you first connect the range-finder
accessory. Otherwise, visit www.duinodroid.com and download the APK installer.

If you have any trouble with this, read through Chapter 1, Step 10.

Step 5. Test

For this project, the Droid Accessory Base has a 9V battery clip soldered to the power leads.
It is always a good idea to test your project before you fit everything into a box. So, connect the
battery and your phone (Figure 5-7).

Readings
05821 29.0
05719 285

095617 28.7
095515 285

Figure 5-7 Testing
Turn on the switch and it should cause the phone to either launch the Droid Temp Logger app, or if it
is not installed, to display the URL from where it can be downloaded.

Step 6. Box the Project

http://www.hacktronics.com/code/OneWire-v2.zip
http://www.duinodroid.com

Boxing this project is a very similar process to the three previous projects. First, lay out the components
in the box (Figure 5-8), and then work out where you will need holes and how big they should be.

T 'E|

0
Fat e
o
5
i

Y

N

Figure 5-8 Laying out the components in a box
You will need holes for:

» The USB cable

» Screws in the base of the box to hold the board in place
» The switch

» A hole near the temperature sensor

Using the Project

To really get the most out of this project, we need to set up an account with Pachube. This will allow us
to automatically send temperature readings that arrive on the Android phone out to the Pachube account.
Start by creating a new Pachube account for yourself on the web site www.parchube.com. This is
free for Pachube Basic members, which will be fine for our purposes.
Once your account has been created, you will have to click “Create a Feed” to give our data
somewhere to go. Figure 5-9 shows this. The only mandatory field is the name for the feed. You also need
to create a stream, so click the add stream and enter the details shown in Figure 5-10.

http://www.parchube.com

Wil s s st 12 s or should we pai data from you?
 [Evil Genius Cat Bed Temperatures |@

Erttrr & cibriplicn ol e Fased

| TAGS

| |comeme-separated Sescriptive keywords tor Ihis Foed |
| LDCATION HAWE

| |Mama of kacation |

| Cick o the map to sl location marker B Rasmcrs markss

| LATITUDE LOMSTUDE ELEVATION
| uatras
| EXPOSIME PO IDOALUN
| ENINODOR) OUTDOON 0 FoED) MODRLE 0 PmOAL (D) WITTUAL
WERETE COMTAGT EMAN.
j Thia will be pullichy visfbla Thin will b publicy vialble
FEED STATUS
o UL PEEVATE
| DATASTREAMS
o TAGE TS BRIl o
il) temparaiors (@) & L] | B Remove
- EJ Add a detastresm
= [i
'51' L0 Cancal_| | €. Smen 17

Figure 5-9 Creating a stream in Pachube

L T B . .
Lt T G Cat el T a5
= 3 O W O e | packube gamTeeds 29013
Al ALTTOMATION L Blectranign 0 Wikigeda D) Teewl 0J

¢ by timaprank # B

Evil Genius Cat Bed Temperatures

TAGS

LOCATION HAME
LATITLARE LOMIITUDE ELEVATION

EXPOSLRE SEPOSITION DO AN

Indear Prysical

FEED FORWATS

EIENESE '

WEBRITE COMNTACT EMAIL

MAueds 29533
DATASTREAMS
1 Ee .\
\

TRIGGERS

Add a Trigges

""“““““"""T"““.““"““"“T“"“““““r““““““"iiiﬂ;f“““"“1"““"“"""""""““"“

Teams of Sercce | By Boicy | © 2011 Conneced Emvimnmants (i

Figure 5-10 The feed summary
Afterward, click Save. You will then see a summary of your new feed.

Make a note of the number—in this case, 29933. You will need to enter this into your Android
application. The other piece of information you will need is your personal API key for your account. You
can find this by clicking My API Keys on the right-hand side of the web site. This will be a long key,
something like: B74W43hXupkN6J_rEsM1exa30X6TjP8cNFFDY s2i6r.

You will also need to enter this into the Android app, but it is easier to log in to the Pachube account
on your phone’s browser so you can copy and paste it.

Now that we have everything ready to go, plug in the accessory to launch the TempLogger app, click
the Menu button on your phone, and select Settings.

Enter the Feed ID and Key as shown in Figure 5-11.

29933

B74Wa3hXupkM6)_rEsM1exa30X6TjPECNFFDYs2) 511

e

Figure 5-11 Setting the Feed ID and Key for Pachube

Once you have entered the settings, click Save and then use the phone’s Back button to return to the
main screen.

Click the checkbox to log in to Pachube. Leave the logger running for a while. You can then go and
see your data on the Pachube web site (Figure 5-12).

1 215 @ &

™
24H
1H

. B

temperature

Figure 5-12 The temperature chart

Theory

The interesting part of this project is being able to wirelessly record remote temperatures to a web
server. In this section, we will look at the part of the Android app responsible for doing this.

The Android Application

The framework for the Android app is the same as for all the other Open Accessory projects in this book,
so please have a look at one of the other Open Accessory chapters for details on how this works.

The sending of Pachube data is handled by a third-party library called JPachube
(code.google.comvp/jpachube). This neatly wraps up the HTTP requests required to send data to Pachube.
The following code is taken from the InputController class. All the code for the app is available from
www.duinodroid.com.

The code is fairly self-explanatory. We first get the Feed ID and Pachube Key out of the preferences
system. If they do not have a value, then the user is prompted to go to the settings page and make the

http://code.google.com/p/jpachube
http://www.duinodroid.com

necessary changes.

privace wvoid sendPachubeReading() {
SharedPreferences settings =
mHostActivity.getSharedPreferences (SettingsActivity . PREFS_NAME, 0):
String pachubeFeed = settings.getString(®PACHUBEFEEDID®, null);
String pachubeKey = gettings.getScring(®PACHUBEKEY®", null);
if (pachubeFeed == null || pachubeKey == null) {
alerc(*Go to Sectings and add entries for Pachube Feed ID and Eey."):
1
else |
ery |
Pachube p = new Pachube (pachubeley) :
Feed f = p.getFeed|Integer.parselnt (pachubeFeed)]);
Double reading = Double.parseDouble (mTemperacure.getTextc() .toScring());
f.updateDatastream{l, reading);
1]
catch (PachubeException e) (
alertie.errorMessage)
}

It’s then simply a matter of using the Pachube and Feed classes to send the data. In the event of an
error, the error message is reported to the user in an alert.

Summary

We now have another Open Accessory project under our belt. In the next chapter, we will move from
measuring temperature to measuring distance—using an ultrasonic range finder.

CHAPTER 6
Ultrasonic Range Finder

AS YOU MIGHT EXPECT, the Evil Genius has many friends in the real estate business. One of these friends
mentioned that it was extremely hard work measuring up rooms using a traditional tape measure while
clutching their cell phone. Apparently, many realtors are afflicted by a medical condition that makes it
impossible to take their cell phone from their hand.

This inspired the Evil Genius to design the final project in his Android accessory lineup, an
ultrasonic range finder (Figure 6-1).

Figure 6-1 The Range Finder Android accessory
The Android control software for the project is shown in Figure 6-2.

GCFull B T

—

Q;.l inch

@ om

Figure 6-2 The Android Range Finder app
Because almost any project is improved by the addition of a laser, the Evil Genius decided to
include a laser on the accessory to indicate the direction in which the distance is being measured.

CAUTION

You should take certain precautions when using lasers: (1) Never shine a laser into your, or
anyone else’s, eyes. (2) Resist the temptation to check if it’s on by peering into it. Instead,
always shine it onto paper or some other light colored surface.

Construction

If you have already constructed the Droid Accessory Base from Chapter 3, there is really very little
construction to do here. In fact, there is hardly any soldering to perform—the biggest task is probably just
putting the project in a box.

The schematic diagram for the project is shown in Figure 6-3.

D1 >
Laser >
GND
GND GND
Accessory Base Dz Echo

: Ultrasonic Range
D3 T
19 Finder Module

D& sV

D5

R1
100Q

Figure 6-3 The schematic diagram

The project uses all four of the IO pins on our Droid Accessory Base. It uses one pin to provide a
+5V supply to the ultrasonic module, two pins for the “trigger” and “echo,” and the final pin to control the
power to the laser.

What You Will Need

In addition to an accessory-capable Android phone (Android 2.3.4 or later) and all the components
required to make the “Droid Accessory Base,” you just need an ultrasonic range—finding module, a laser
module, a resistor, and a few connectors. See the Parts Bin for a full list of what you need.

PARTS BIN

Part Guantity Description Source
Droid Accessory Base 1 See Chapter 3 for parts and

build insiructions
RI I 100L2 0.5-W metal film resistor Farnell: 9339760
Battery 1 PP3 9V NiMH rechargeable battery
Batery clip | PP3-style battery clip Farnell: 1183124
D1 I Laser diode module 5 mW eBay
Case | Plastic case 100 X 76 % 4lmm Local electronics store

The key component in this project is the ultrasonic range—finder module. Figure 6-4 shows the
module used by the author. This module requires just four pins to operate it. As well as GND (ground or
0V) and 5V, the module has a “trigger” input and an “echo” output. The datasheet for this component
specifies that you must provide a 10-microsecond pulse to the trigger input and then see how much time
elapses before the “echo” pin indicates that the sound wave has bounced back. See the “Theory” section

later in this chapter for more details on how ultrasonic range finding works.

Figure 6-4 The ultrasonic range—finder module

It will make construction much easier if you can find a module similar to that used by the author. The
interfaces to these devices all seem much the same, and if you can find one with the pins in the same
places, that will be a big help. The author sourced his module from eBay, where there were many similar
devices on offer for just a few dollars.

If you plan to make a noncharging USB lead, you will need two 1kQ resistors rather than just one.
You will also need an old USB extension lead. See Chapter 2 for details on how to make this lead, which
will prevent your mobile phone from draining your accessories’ batteries.

As a longer-lasting battery alternative, you can use a holder that will accept six AA cells to supply
the project at 9V.

In addition to these components, you will also need the following equipment shown in the Toolbox.

TOOLBOX

L

» An electric drill and assorted drill bits
» Assorted self-tapping screws

» A computer to program the Arduino

» A soldering iron and solder

» An A-to-B lead

Step 1. Make a Droid Accessory Base

This is the unit described in Chapter 3 that comprises a USB host shield, an ATMega328 microprocessor
programmed in your Arduino, and a few other components.

Step 2. Solder the Laser and Resistor

The laser module will have two leads: a red positive connection and a black negative connection. You
will probably need to shorten the leads to a couple of inches (50mm). Strip and tin the ends of the leads,
putting a fairly thick layer of solder on the negative lead, which we are going to push straight into the top-
most header pin on our Droid Accessory Base. Shorten the leads of the 100Q2-resistor R1 and solder one
end to the positive laser lead. The other end of the resistor is also going to be pushed into the socket for
the D5 connection, so thicken this up a little with solder.

The completed laser module is shown in Figure 6-5.

Figure 6-5 The laser module

Step 3. Install the Arduino Sketch

To get the sketch onto the microcontroller, we are first going to program the chip and then carefully take it
off the Arduino board and fit it onto the socket on the Droid Duino Base.

The sketch uses the same libraries as the projects in Chapters 2 thru 5, so if you have not completed
one of these projects, then refer to the “Construction” section in Chapter 2, under the subsection “Step 6.
Install the Open Accessory Libraries.”

Once the sketch is installed on the microcontroller, carefully remove it, levering each end up a little
at a time so as not to bend the pins. Then, seat it onto the Droid Accessory Base, making sure you have it
the right way around.

Step 4. Install the Android App

If your phone has an Internet connection, you can skip installation of the Android app and wait until the
phone’s Open Accessory software asks for it (when you first connect the range finder accessory).
Otherwise, visit www.duinodroid.com and download the APK installer.

If you have any trouble with this, return to Chapter 2 and read “Step 10” in the “Construction”
sequence section.

http://www.duinodroid.com

Step 5. Test the Project

It is always a good idea to test your project before fitting everything into a box. So, connect everything up,
as shown in Figure 6-6.

| Range Finder Accessory

Mo instalied applications werk
with this USE accessory. Learn [
I'fl:ﬂ'tlt‘ﬂu‘lﬁﬂicrmr’lﬂ
| || ’ttpeiewes: duinodraid com/
| android
1
|

Figure 6-6 Testing

Now, turn on the switch. This should cause the phone to either launch the Droid Range Finder app
or, if it is not installed, to display the URL from where it can be downloaded.

Try clicking the Laser checkbox to make sure it turns the laser on and off. Then, experiment by
moving your hand in front of the ultrasonic transducers and notice the distance reading changing in the
Android display screen. Pressing the current reading will record it to the log.

Step 6. Box the Project

Lay the components out in the box, working out where everything will go, and mark the positions for the
hole with a pencil (Figure 6-7).

Figure 6-7 Positioning the components in the box
Drill the holes for the ultrasonic transducers, the laser module, the USB socket and two small holes

for fixing the shield board to the bottom of the box. You will also need a hole in the side of the box for the

switch.
Use small self-tapping screws to fix the shield into the box (Figure 6-8). These should be small

enough to hold the board in place without sticking out of the bottom of the box, where they could scratch
something.

2.3
L0 =
=]
O
o
=

=]
[
o

Figure 6-8 The components fixed inside the box
Using the Project

By now, you should have the Android app working and continuously displaying the distance to the target
(Figure 6-9).

Gvel B ™0

| Distance -

' (®)inch
15 & e-

| [#] wseron

Measurements
S5in
107 in

98 in
15in
49in

Figure 6-9 The Android app

You can change the units between inches and cm using the radio buttons, and by tapping the reading
itself at any time, the reading will be added to the list of readings at the bottom of the screen.

The checkbox allows the laser to be turned on and off.

The source code for the app is available as open-source software; see the book’s web site

(www.duinodroid.com). Please feel free to experiment with and improve the code, because you can take
this project in many interesting directions, including;

» Automatically detecting that something has moved and sending an SMS or web request

http://www.duinodroid.com

» Calculating the area of a room from the two dimensions

Theory

We have now looked at enough Android accessories in earlier chapters to not really wish to repeat
ourselves here.

We will, however, look at how ultrasonic range finding works, and how you interface to this in an
Arduino sketch.

Ultrasonic Range Finding

Ultrasonic range finding works the same way as sonar used by ships and submarines. A sound wave is
sent out from a sender, hits an object, and bounces back. As you know, using the speed of sound, the
distance to the sound-reflecting object can be calculated by measuring the time it takes for the sound pulse
to return to the receiver (Figure 6-10).

Reciever

Sender)

Figure 6-10 Ultrasonic range finding

The sound used is at a high frequency—hence, it is called ultrasonic. Most units operate at a
frequency of about 40 kHz. Not many people can hear sounds above 20 kHz.

The Arduino code for measuring the range is all contained within the takeSounding function. This
sends a single 10-microsecond pulse to the “trigger” pin of the ultrasonic module, which then uses the
built-in pulseln Arduino function to measure the time period before the echo pin goes high.

This period is the amount of time it took for the sound wave to travel from the sender, hit the target,
and bounce back to the sensor.

long takeScundingl()
{
digitalWrite{trigPin, LOW};
delayMicroseconds (2] ;
digitalWrite({trigPin, HIGH);
delayMicroseconds{10) ;
digitalWrite(trigPin, LOW);
delayMicroseconds (2) ;
long duration = pulseIn{echoPin,
HIGH) ;
long distance =
microsecondsToCentimeters (duration) ;
if (distance = 500}
{
return lastDistance:
1
alse
{
lastDistance = distance;
return distance;

We then need to convert that time in milliseconds into a distance in centimeters. If there is no
reflection, because there is no object that is close enough, or the object is reflecting the sound wave away,
rather than bouncing it back directly to the receiver, the time of the pulse will be very large, and so the
distance will appear as very large.

To filter out these long readings, we disregard any measurement that is greater than 5m, using the last
sensible reading we got.

The function microsecondsToCentimeters is actually very straightforward.

long microsecondsTolentimeters{long
microseconds)

return microseconds J 29 / 2

=i

The speed of sound is roughly 343m/s in dry air at 20 °C, or 34,300cnvs.

Or, put another way, 34,300/1,000,000cm/microsecond.

That is, 0.0343cnymicrosecond.

Put another way, 1/0.0343 microseconds/cm.

Or, 29.15 microseconds/cm.

Thus, a time of 291.5 microseconds would indicate a distance of 10cm.

The function microsecondsToCentimeters rounds off 29.15 to 29 and then also divides the answer by
2, because we don’t want the distance of the whole return journey, just the distance to the subject.

In actual fact, many factors affect the speed of sound, so this approach can only give an approximate
answer. The temperature and the humidity of the air will both affect the measurement.

Summary

This is the last of our Android accessories. The remainder of the book is devoted to combining Android
and Arduino in a different way, to provide a home automation system based on a low-cost Android tablet.
Because such devices are not yet ready to use the Android Open Accessory protocol, we will have to find
our own way of connecting them to an Arduino.

PART TWO
Home Automation

i

|
|
i

1
|

CHAPTER 7
Home Automation Controller

THIS PROJECT FORMS the hub of the Evil Genius’ home automation system. It is the main control system
for many of the projects in this book.

Lair Automation is a big deal for the Evil Genius, who likes to remotely control the lights, power
sockets, and heating, and even control access to the front door from wherever he is in the world. So, in the
event of unexpected visits from out-of-town Evil Genius friends, he can turn up the heating and unlock the
door, without having to leave the comfort of his couch. He finds this so much easier than barking orders at
his minions.

The Evil Genius does try to be green and generate his own electricity, but the minions can only run
around a treadmill for so long before they become tired and hungry. So the lair is still connected to the
electric company. The Evil Genius is also somewhat preoccupied by the size of his electricity bill, and
despite threats and horrific punishments, his minions will tend to pointlessly leave the lights on in the
shark tank or leave the death-ray on standby rather than turn it off at the outlet. The home (or lair)
automation controller provides technology to help the Evil Genius turn things off automatically and keep
his energy bills under control.

Figure 7-1 shows the control unit for the home automation controller, and Figure 7-2 shows how the
home automation controller fits with some of the other projects in this book.

P sstpm T - o+

Figure 7-1 The home automation controller
Looking at Figure 7-2, you can see that the controller is based on an Android tablet and an Arduino
board linked closely together.

Controller
User Interface =—WWiFi Home Modem/Hub
(Android Tablet)

Web Server
Sound
RF Receiver
-
Power Outlet and B
Lighting RF Transmitter [~ Controller #D Smant Thermostat
{Arduino Una) 2m {Arduing Uno)
i
RF Receiver

RFID Door Lock

Figure 7-2 The home automation system

Arduino boards are great for connecting electronics to computers, but are not so good at providing a
nice, easy-to-use interface, over and above a small display and a few buttons. This is where the cheap
$100 Android tablet comes in. This has a large touchscreen, WiFi, sound output, and sometimes even a
webcam. What’s more, an Android tablet can act as a web server, so we can access our home automation
from any Web device, whether at home or at large via the Internet.

Eventually our home automation controller will be linked to:

» RF-controlled wall outlets and lights
» A “smart” thermostat using another Arduino
» An RFID door lock

For now, we will content ourselves with creating the basic setup for the Arduino and Android tablet.
As the book progresses, we will add other components to the project a chapter at a time.

There are several ways we could allow the Android tablet to send commands to the Arduino. We
could:

» Equip our Arduino with an Ethernet or WiFi shield and communicate over a network.

» Connect a Bluetooth module to the Arduino, and, if our Android tablet has Bluetooth, send data that way.
» Use the headphone output from the Android tablet to send commands to the Arduino.

» Use a USB connection and the Google ADK (this requires Android 2.3.4 or later).

In other chapters, we make use of both Ethernet and Bluetooth, as well as an RF radio link and USB
using the Android ADK. But for this project, we are going to build a “sound” interface between the
Android and the Arduino. This has the advantage of being a “hard” link—in other words, a wire that runs
directly from the Android tablet to the Arduino. Also, many of the low-cost Android tablets do not have

Bluetooth or Android 2.3.4 (necessary for ADK), which would otherwise make ADK a good choice.

The Android tablet will generate warbling tones, employing the same technique that early home
computers used to use when saving programs onto cassette tape.

The usefulness of this kind of link is not limited to home automation. It can be used in any situation
where you need an Android tablet to send commands to an Arduino.

This project is split into three sections: making the sound link hardware; programming the Android
tablet; and programming the Arduino.

The Sound Link Module

The schematic diagram for the sound link module is shown in Figure 7-3.

A1 c1
D1
—[10 | e H
VY
TR4E001
2
RS (=
=
g
2 1
Y
[
-
-
-
Audid Ing i i
- -
GND
VY Irpat Pt
Arnduing s
C3 L
—
| - —
L ——
15 _1:6"; | GiF OlF
| 1ce 16y -
] GND
in| 70 | Owm
Skt o £
i
==
HouF
16Y

Figure 7-3 The schematic diagram for the sound link

The “Theory” section at the end of this chapter holds more information on how this works, but for
now we will content ourselves with knowing that the Android device will produce a sequence of 16
sound pulses at 1 kHz. A long pulse will indicate a logical 1, and a short pulse a 0. These pulses are
detected and fed into a digital input on the Arduino, which converts them to a number.

What You Will Need

You will need the following components listed in the Parts Bin to make the sound link module.

PARTS BIN
Part Guantity Description Source
Arduino Uno 1 Arduino Uno board www.arduino.ce
Android tablet 1 Low-cost Android tablet—Android eBay
version 2.1 or later, with headphone
Jack and WiFi
15V PSU 1 15V 1A wall-wart power supply Farnell: 1176620
RI,R3 2 1AL 0.5-W metal film resistor Farnell: 9339779
R2 | M2 0.5-W metal film resistor Farnell: 9339809
R4 | 100K 0.5-W metal film resistor Farnell: 93309795
RS | 33kA2 0.5-W metal film resistor Farmell: 9340424
Cl | 1pF 16V electrolytic capacitor Farnell: 1236655
c2 | 220nF ceramic capacitor Farnell: 1216441
C3,C4 2 100uF 16V electrolytic capacitor Farnell: 1136275
C5 1 100nF ceramic capacitor Farnell: 1200414
21 | I N4001 Farnell: 1458986
IC1 | 7611 CMOS operational amplifier Farnell: 1018166
Ic2 | 7909 linear voltage regulator Farnell: 7202164
IC socket Optienal Eight-pin DIL IC socket Farnell: 1101345
1 Stripboard, 17 rows of 12 holes Farnell; 12001473
1 2.1mm power plug Farnell: 1200147
1 2. lmm power socket Farnell: 1217038
3. 5mm plug 1 3.5mm stereo audio plug Farnell; 12673849
Wire Assorted solid core and multi-core wire Local electronics
(see the following paragraphs in this section) store
Box ABS project box to fit the Android tablet Farnell, Radio Shack,
and others
Strip of steel Hobby store

Obviously, the most expensive parts of this project are the Android tablet and the Arduino board.
The Android tablet that the author used cost around $100 on eBay. It has a seven-inch display and uses
Android 2.1. It is clearly designed as a low-cost cure for iPad-envy. The build quality is fairly low, but at
that price, what do you expect?

The tablet needs to have Android version 2.1 or later installed on it. It must also have a headphone
jack and WiFi, but Bluetooth is not required.

The latest Arduino board is the Arduino Uno. The official Arduino web site (www.arduino.cc) lists
suppliers of the Uno. However, if you are on a budget, you can use an Arduino clone of either the Arduino
Uno or the older Arduino Duemilanove, which will work just fine.

You can buy a new audio plug, but you may find that you have an old pair of unwanted earphones
from which you can just cut off the plug and ten inches (250mm) of lead. This has the added advantage
that it already has a lead soldered to it. The same argument applies to the 2.1mm power plug. You may
well have an unwanted power adapter from which a plug and short length of lead can be salvaged.

If, like the author, the project box you are going to fit everything into does not have a lot of spare
room, then use right-angle plugs, which will stick out from the side of the Android tablet much less. You
can also bend the leads on a regular 3.5mm jack plug to stop it from sticking out too much.

As you can see from Figure 7-1, the Android tablet is going to be fixed to the inside of a plastic
project box. This needs to be big enough to contain the tablet, but also have enough depth to contain the

http://www.arduino.cc

other electronics that need to be in the box. These components will include the Arduino, the sound
interface and later on an RF remote control, a Bluetooth module, and an RF transmitter. This means you
will need at least 1 inch (25mm) of depth more than the depth of the tablet. The author’s box has a total
depth of about 2% inches (65mm).

For all the projects in this book, you will need a basic stock of wire. For making links on stripboard,
solid core wire is best. Something like 22 AWG copper wire is fine. When it comes to making
connections between components of the design, such as between the sound interface stripboard and the
Arduino board, it’s best to use multi-core “equipment wire.” Again, around 22 AWG is fine. The author
keeps a box of wires reclaimed from old household electronics. It is always useful to have a variety of
colors, and to use red for positive connections, black or blue for ground and negative connections, and
another color such as yellow or orange for signal connections.

In addition to these components, you will need the following tools listed in the Toolbox.

TOOLBOX

» Soldering equipment

» Multi-core wire in various colors

» A multimeter

» An electric drill and assorted drill bits

» A craft knife or strong scissors

» An optional rotary cutter such as a Dremel

L

Step 1. Prepare the Stripboard

The sound link is constructed on a small piece of stripboard (Figure 7-4).

1 2 3 45 6 7 8 9101112

1
2 : T
3 +
4 C1 e a
s O 2% 17 || = Arduino 5V
8 e sx 6 i
7 I e |4X 5

Audio In =T a 1’
Audio GND — (] S

e +
10 |€ /:: Arduino D18 (Ad)
" o 7 pa——
T) e

i3 T & Arduino 9V in
14
15 ou —— Arduino GND
16 in

15V =— P

1 2 3 45 6 7 8 9101112

Figure 7-4 The stripboard layout for the sound link
If this is the first time you have used stripboard, then there are a few things you need to know.
Stripboard is a perforated board with holes at 1/10-inch pitch. Behind the holes are strips of copper.
Component leads are pushed through from the plain side, and soldered to the copper strips. Figure 7-5
shows the stripboard for the sound link from the copper side.

()
3t j‘
; ‘-}_
1818
B i

i' lels e oo
GO 1000000

Figure 7-5 The prepared stripboard
Notice that some of the copper strips are cut where the IC is to be installed. These places are marked

by an “X” on the stripboard layout of Figure 7-4. Such cuts in the strips are made by taking a drill bit,
setting the tip into the hole where you want to make the cut, and twisting it between your fingers a few
times to remove the copper track without actually making much of a hole.

So, start by cutting a piece of stripboard that is 17 strips long, each strip having 12 holes to it. You
can do this with a strong pair of scissors, but this will usually result in some ragged edges. Greater
neatness can be achieved by scoring the board with a craft knife and breaking it over the edge of a table.
But be careful when the stripboard breaks, it can leave sharp edges.

Using Figures 7-4 and 7-5 as a guide, make the four cuts in the track with a drill bit.

Step 2. Solder the Links

The rule with soldering to stripboards—or for that matter, PCBs—is to solder the lowest components
first. This is so that if you put the part in place and turn the board onto its back, the weight of the board
will keep the component in place while you solder it.
In this project, we have six links to make on the board, and we are going to make these links first.
Using Figures 7-4 and 7-6 for reference, cut solid core wire to roughly the right lengths, solder them
in place, and cut off the excess wire.

Figure 7-6 The stripboard with links

Step 3. Solder the Resistors and Diode

The next lowest components are the resistors and diodes (Figure 7-7). Do not solder the R5 resistor yet,

this is added after we have attached the trailing leads.

Figure 7-7 The stripboard with resistors and diode
The resistors can go either way around, but when you solder the diode into place, it must be as
shown in Figure 7-7, with the striped end toward the bottom of the board.

Step 4. Solder the IC

You may choose to use an IC socket to remove the possibility of damaging the IC by overheating during
soldering. If you decide to solder the IC directly, try to minimize the time that you are heating the pins.
Also, if you have a difficult connection that takes a while for the solder to flow, wait until the IC is cool
again before soldering the next lead.

Make sure the IC is the right way around. The little dot denotes pin 1 and should be at the top left.

See Figure 7-8.

Figure 7-8 The stripboard with the IC in place

Step 5. Solder the Remaining Components

Once the IC is in place, only the four capacitors and the voltage regulator remain to be soldered.
Electrolytic capacitors are polarized, which means we need to get them the right way around. The longer
lead will be the positive lead. The negative lead will usually have a diamond symbol next to it.

The voltage regulator has the metal tab toward the left side of the board.

Figure 7-9 shows the completed stripboard.

Figure 7-9 The completed stripboard

Note that we have not attached the resistor R5 yet. This will be soldered into place after we have
attached the leads to the board.

At this point, a thorough inspection of the board is a good idea. Inspect the top of the board to make
sure all the components and links are in the places indicated by Figure 7-4, and look at the bottom of the
board to make sure all the breaks are in the right places and that there are no accidental bridges of solder
between tracks.

Step 6. Attach Trailing Leads

We need to be able to connect our sound interface to both the Android tablet and the Arduino board, so
the next step is to solder some leads to the board (Figure 7-10).

Figure 7-10 The stripboard with trailing leads attached

Starting with the audio lead, you have two choices here. Either buy a plain stereo 3.5mm jack plug
and solder some leads to it, or buy or scavenge a cheap or unwanted pair of headphones and chop the lead
off, about 10 inches (250mm) from the plug. That way, you have a ready-made lead. The lead will
probably have an outer shielding layer of braided wires and a pair of inner wires, often with red and
white insulation for the left and right channels from the Android device’s sound card. We only need one
of the channels, so you can cut off one of the inner leads (let’s say the white one). When you do this, make
sure there is no bare wire sticking out that could short to the braided outer shielding since this could
damage the Android device.

Gather the outer shielding wire and twist it together, and then apply some solder into it.
Carefully strip the remaining inner red lead and flow some solder into that, too.

Push the shielding wire and red wire through the holes in the stripboard and solder the underside, as
shown in Figures 7-10 and 7-4.

In addition to the audio lead, we will need a lead connected to a socket to take power from the 15V
power supply, and another lead connected to a low-voltage power plug to supply power to the Arduino.

The socket lead is made by soldering short lengths of multi-core wire between the sound interface
card and a 2.1mm power socket. However, for the power plug, we can either make ourselves a lead using
a plug and multi-core wire, or chop the end off an unwanted power supply lead.

We can now solder the R5 resistor into place above the leads on the left-hand side of the board.
Make sure it is not touching the exposed leads, however. See Figure 7-11.

Figure 7-11 The board with the R5 in place
Finally, we need wires to connect the 5V supply from the Arduino back to the sound interface card
and from the sound card to connection A4 of the Arduino board.

Step 7. Test

That completes the construction of the board. Now we just need to test it.

Rather than test the full home automation software, we are going to download a test application for
the Android device and a test sketch for the Arduino from the book’s web site at www.duinodroid.com.

Let’s start by installing the Android application onto our Android device.

Unlike the iPhone, you can download your Android applications from anywhere you like. This does
mean that you have to make sure you are not downloading anything malicious, and so you may need to
change a setting on your Android device to accomplish this.

Open the Android “Settings” app, navigate to Applications, and check the Unknown Sources box, as

shown in Figure 7-12.

http://www.duinodroid.com

a0 M@ 10:26 AM

'Application settings

Unknown sources .

W INsEall of non-iarKet

Quick launch
Manage applications
Manage and remon stalled ap
Running services

Development

Figure 7-12 Changing Android settings to allow download
To actually install the test application, open the browser app on your Android device and navigate to
www.duinodroid.com. Click the Downloads tab and then click the link for Sound Interface Test App.
This will initiate a download of the application, after which you can run it (Figure 7-13).

ay

‘Sound Test

Play

- e 10:30am

Figure 7-13 The Android test app for the sound interface

The test application lets you enter a four-digit hexadecimal (hex) number that will be converted into
sound pulses when you press the Play button. It is these pulses that the full home automation software will
eventually generate to be sent to the Arduino, which will reconstruct the number. We can test it out on its
own without plugging it into the sound interface by just entering a number (each digit must be 0 to 9 or A

http://www.duinodroid.com

to F).

Try entering “0000” and play, and then “FFFF” and play. You should be able to tell the difference
between the two sets of warbling coming through the Android device’s speakers.

We now need to set up our Arduino environment so that we can complete the link and have our
Arduino tell us the numbers we are sending it.

The Arduino board we are using (Arduino Uno) uses a special-purpose development environment
that lets us send programs, or “sketches” as they are called in the Arduino world, to the board through the
USB lead.

We need to install the Arduino environment, and rather than repeat instructions given elsewhere,
please refer to the official Arduino site (www.arduino.cc) and follow the instructions there for installing
the Arduino environment on your computer. You will find separate instructions there for Windows, Linux,
and Mac. This book uses version 22 of the Arduino software and the Arduino Uno interface board;
however, you should have no problem using later versions of Arduino.

Once your Arduino environment is set up, you need to install the test sketch for the project. In fact,
all the sketches for the projects in this book are available in a single zip file that can be downloaded from
www.duinodroid.com.

Unzip the file and move the entire Arduino Android folder to your sketches folder. In Windows, your
sketches folder will be in My Documents/Arduino. On the Mac, you will find it in your home directory
under Documents/Arduino/, and on Linux it will be in the sketchbook directory of your home directory.

Restart the Arduino software and then from the File menu, select Sketches, Arduino Android, and
then sound_test. This will open the Sound Test sketch shown in Figure 7-14.

el Lre sound™in 13
Bidef ire zeroburat ionFron 10998
et i rerolurationTo 26AFA
#define onelurctionfron J5659
#defire onelurctionTo 59808
#dal e resetTimsout 3398
| ;
id setupl)
i
rfcdedaountPin, THPUT)G
i ot i 9608)
tal print inf*Ready'

|
|
|
|
|
:
|
i

L greed Ant reaulty
vt bitho = B;
ong [astPulseTing = B

wid Leopdy
i ;
ro pulselength = polzelnfsound®in, H16H, onelurationTo ® 2);
ro tiveSincelastPulse = nillisd} - lostPulseTise;
lastPulseTiss = i ()i

Lisg
(peileelangth == 8 || timeSincalostulsa » resstlimecut)

Figure 7-14 The Sound Test sketch

In the “Theory” section at the end of this chapter, we will look at how this sketch decodes the
warbling coming from the Android device. For now, however, we will be content just to use it.
This sketch simply waits for a series of 16 sound pulses and then echoes the number it receives in the

http://www.arduino.cc
http://www.duinodroid.com

Serial Monitor of the Arduino software. In other words, we are going to use our computer as a monitor to
tell us what the Arduino is receiving from the Android device.

Connect your Arduino board to your computer via USB and upload the sketch to the board by
clicking the upload icon (second to right on the toolbar). If you get an error message, you will need to set
the type of board you are using and the connection. To set the board, select the Tools menu and then the
Board option. This will give you a list something like that in Figure 7-15.

_® Arduino File Edit Skewch [EEETH velp —
MO Auto Format KT
£ Archive Sketch

Fix Encoding & Reload

Serial Monitor EM

 Ardina Uno

et e goure®in 3 Serial Past = Arduing Duemiltanove or Nano w/ ATmegal2i
| : Arduino Diecimila, Duemilanove, or Mano w/ ATmegal 68
e Burn Bootloader * Arduino Mega 2560
Hee (aoandPin, THFUT g Arduing Mega (ATmegal 2800
Caaba; Arduing Mini
Arduing Fio
T remslt; Arduing BT w/ ATmega328
e it Arduino BT w/ ATmegal6B
i 12oeld LilyPad Arduing w/ ATmegad28
i LilyPad Arduing w/ ATmegal&3
it Rocatmci iy Arduina Pro or Pra Mini {5V, 16 MHz) w/ ATmega32s
¢ abartTing = n Arduing Pro or Pra Mini {5V, 16 MHz) w/ ATmegal6s
gl W{soundPin)) Arduing Pro ar Pra Mini {3.3V, 8 MHz) w/ ATmega32B
0 [% - skartTine = 50 Arduing Pro or Pra Mini (3.3, 8 MHz) w/ ATmegal6B
{ Arduing NG or alder w/ ATmegalbs
el it Arduino NG or older w/ ATmega8
| = i

Figure 7-15 Selecting the Arduino board type

Select the option for the type of board you are using. Then, do the same thing for the serial port,
which is also on the Tools menu. This will generally be the top option on the list of ports, and normally
COM4 on Windows.

When you clicked the Upload icon, you should have seen some furious flickering of the little red
built-in LEDs on the Arduino board. This indicates that the Arduino board is receiving the sketch.

So, let’s connect up our sound interface board and give it a go. Figure 7-16 shows the sound
interface connected to the Arduino board. In particular, to the A4 and +5V connections.

Figure 7-16 Wiring up to test the sound interface

Plug the audio jack into the sound card, and the 15V power supply into the socket on the training
leads from the sound interface card. Then, plug the 9V plug from the sound interface board into the
Arduino and attach the 5V and digital signal wires from the Arduino, as shown in Figure 7-16.

Now that everything is connected, we will enter a number on the Android test application and send it
to the Arduino through the sound interface. The Arduino will then forward the number on to your computer
over the USB lead attached to the Arduino.

To see the messages coming from the Arduino, open the Arduino Serial Monitor on your computer
(Figure 7-17). This lets you see any serial communications coming from the Arduino.

2 M) Jdev/tty.usbmodem4 11

(-SEnd-j

Ready
Ardulno recieved: FOCT

Autoscroll ' Mo line ending T! | 9600 baud T!

Figure 7-17 The Serial Monitor
Enter a number—say, FOC7—into the Android test application and press Play. If you can hear the
warbling, you do not have the audio lead plugged into the Android tablet, so plug it in and try again.
Almost immediately, you should see the following message appear in the Serial Monitor:

“Arduino Received: FOC7.” If you got a different number, or no number at all, then try adjusting the
volume level on the Android tablet. You will probably need to set the volume to about three quarters of
maximum.

Step 8. Box the Controller

One of the goals that the author had in mounting the Android tablet into the box was to avoid damaging it,
so that if at some point it needed to be extracted from the home automation controller, this would be
possible.

The most difficult part of making a box for the controller is cutting a big window in the box lid to
allow access to the Android tablet’s touchscreen. This is made a lot easier if you have a rotary hand tool
like the Dremel, which has a cutting disk.

As the saying goes “measure twice, cut once,” so carefully work out where you need to cut your
window in the lid and mark it with pencil. Once you are absolutely sure everything is in the right position,
cut out the window (Figure 7-18).

Figure 7-18 The box lid

Note that the author has also cut out a V-shaped corner to allow the Back button to be pressed on the
tablet.

We need a few other holes in the box itself, including one for the Android tablet’s power lead. This
is supplied through a hole on the side of the box that is big enough for the plug to pass completely through
without the need for modification.

We also need a small hole next to the on switch for the Android tablet. This only needs to be big
enough to poke a screwdriver through to turn the tablet on.

The remaining hole that we need in the box is for the power socket that we attached by flying leads
to the sound interface board.

The exact position of these holes will depend on the size of your box and of the Android tablet itself.
In the next chapter, we will also make some more holes in the board to fix the perfboard containing the
power control electronics, and optionally a hole to allow a USB connector to be attached to the Arduino
board. So you may wish to wait until the next chapter before finalizing your box construction.
Unfortunately, most Evil Geniuses are not known for their patience, so you too may “need” to see how it
will all look in a box.

To fix the tablet to the lid, a length of drilled constructional metal from a project kit was used. This
material is available from hobby shops and is useful because it can be easily bent and cut into the shape

you need. The material was bent to fit over the back of the tablet, and the last holes drilled turned out to
be big enough for the center screws that held the lid on to pass through and into the base of the box. See

Figure 7-19.

Figure 7-19 The tablet fixings

We will add more to this project box as we proceed through the home automation section of this
book.

Android Software

Now that we have proved the sound link and fitted the tablet into a box, it is time to look at the Home
Automation software. Like the “sound test” app, this can be downloaded from www.duinodroid.com,
where the source code for both applications is also freely available if you want to modify the software for
your own ends. Once downloaded and installed, leave the sound interface and Arduino attached so you
can see the messages the Android tablet is sending.

The structure of the Android software (Figure 7-20) is unusual in that it actually contains a small
web server. This web server serves HTML to the device’s browser, so that the main user interface to the
application is a web browser running on the same Android tablet as this mini web server.

http://www.duinodroid.com

Android Tablet

N
Preferences
User Interface
™ '
Browser Web Server
) |

Browser on Local
Metwork

Figure 7-20 The structure of the Android app
This means that other devices on the local network can also connect to the Android tablet, and if you

configure your home wireless modem correctly, you can also communicate with the Home Automation
app over the Internet.

A word of caution is necessary here. If you do allow Internet access, there is almost nothing in the
way of security to stop someone who stumbles on your home automation server to take control of your
house. So, you may prefer not to take this risk.

Figure 7-21 shows the first screen you see when the app starts.

a0 Hl @ 7:48PM

HomeAutomation

Figure 7-21 The Home Automation app start screen
The first line tells us that the server is running at the URL displayed. In this case,

“http://10.0.2.15:8080/home?”.

http://10.0.2.15%3A8080/home

But first, we will click Preferences, which will open a second screen (Figure 7-22).

a0 Hl @ o:10 PM

HomeAutomation

Outlet 1

QOutlet 2
Lights 1

Lights 2

Figure 7-22 The Preferences screen

The Preferences screen lets us assign meaningful names to the power and light sockets we will
control. If you scroll down to the end of the Preferences screen, you will see an option to set a password.
This password will be required when unlocking the door. Do not worry about setting the preferences
now; you can come back to this any time and change them. For now, just click Back to return to the main
menu, and then click Open Browser, which will launch the Android device’s browser on the main page of
the automation system (Figure 7-23).

1] Al € saaam

[&@ http://10.0.2.15:8080/home? |

Home

Heating Mon-Fri Heating Weekend

Figure 7-23 The main menu

If your computer is on the same network as your Android device, you can type the URL at the top of
Figure 7-23 into the browser on your computer and see the same screen. This means you can control your
home from any device connected to your home network using just a browser. That includes laptops,
netbooks, iPhones, iPads, and iPod touches, as well as most other smartphones.

How cool is that?

From the main menu, we then have a series of different options for controlling our home.
Unfortunately, none of these options will do anything yet, because we have not made the hardware to

control the power, heating, and the door. But we can at least have a look at the options that will gradually
become available as we work our way through this section of the book.
Clicking Power will open up our power and light control options (Figure 7-24).

&0 fl @ 7:58 PM

http://10.0.2.15:8080/power? %]

Power

— Outlett | on | o |
— Outetz | on | or |
et | o | or
— gnsz | on | o

[E—— 0~ | 07 |

Figure 7-24 The power and lights

From this screen, you can turn outlets and lights on and off individually, or turn all of them on and
off. Remember, you can at any time go back to the Home Automation app itself and change the preferences
to use different names for the channels. Simply click the Android Home button and bring the Home
Automation app back to the foreground.

Try clicking On next for the first outlet. You should see a number appear in the Serial Monitor.
Unplug the audio lead from the Android tablet, and you should hear the different warbles that you get
when each button is pressed.

At the bottom of the browser window, you will see a green button labeled Home. Click this to return
to the main menu and then click Bedtime (Figure 7-25). This interesting feature is designed to turn
everything off when the Evil Genius is ready to go to bed. It allows 10 minutes from pressing the button
until all the power and lights are turned off. This gives the Evil Genius enough time to mount his Segway
and scoot the half mile to his bedroom before everything goes dark.

| Ml @& 2:30 M
[http://10.0.2.15:8080/bedtime?]

Bedtime

BACK

Figure 7-25 Bedtime

If the Evil Genius changes his mind, he can always click Back before the timer has expired and the
lights and power will then not be turned off.
The next option from the main menu is Timers (Figure 7-26).

#0 Hl @ &:01PM

(@] http://10.0.2.15:8080/timers? H

Timers

em on Time off Time

Figure 7-26 Timers

This option allows up to five timed events to take place. For each event, you can select a light or a
power socket and turn it on at one time and then off at a second time. If you set the “off time” to a time that
is before the “on time,” then it assumes you mean the “off time to be for the next day.

The changes to the timers will not be saved until you click Save Changes.

Returning to the main menu, the next option is Door Lock (Figure 7-27).

iy il @ 8:03 PM |

http://10.0.2.15:8080/door? H

Door Lock

LOCK UNLOCK

Figure 7-27 The Door Lock screen

In a vague nod in the direction of security, you must enter a password that matches the password set
in Preferences before you can lock or unlock the door.

The final option in the main menu lets you set a temperature profile for the heating (Figure 7-28). The
temperatures that you set for various times of day will be transferred to the Arduino and then onto the
project of Chapter 9, a “smart” thermostat, using an Arduino-to—Arduino RF link. See Chapter 9 for
more details of this feature.

al Ealll @ 6:37 AM

http://10.0.2.15:8080/heatingD? *|

Mon-Fri Heating

MEEEN TN T EETEN BECTEN EETEN ETTE
16-17

12-15 15-18 L] -3 23-23 2324

Figure 7-28 Heating

Internet Access

You have probably already tried typing in the URL for the home automation controller on a computer
connected to your home wireless network. Remember that your Android tablet is running as a web server,
so you can actually take this a step further and access your home automation controller from anywhere on
the Internet. However, to do this, you will have to change some settings on your home wireless hub. This
is because, by default, your wireless router does not allow any computers on your home network to be
directly accessible from the big bad world of the Internet. To make this possible, you have to open up
access to the Android tablet via port 8080.

Technically, what you are trying to accomplish is opening port 8080 to incoming HTTP requests to
the Android Tablet.

The procedure for doing this will be slightly different for every wireless router, and the instructions
that follow are for the author’s router. So, you will find things are slightly different for you.

The first step is to log in to the administration console for your router from your browser.

From the main status page after logging in (Figure 7-29), you will see some numbers. Look for
something like “external IP address” and make a note of the IP address. You will need this when
connecting from outside your network.

Service Information

| 00:21:63:3b:¢5:00

192.168.1.1 | 255.255.255.0

Duplex

=
x

b w|m
X X X

' VPI/V L | 1P Address | i'ubnst Gateway | Encapsulation | Status
PVC-0 | 0/38 $5.255.255.255 | 92.16.0.1 | Route -PPPoA E |

Figure 7-29 The router status page

You are now looking for an option resembling “INAT Virtual Server” (Figure 7-30). This will allow
you to route any web requests coming to your router to the Android tablet. Notice the changes circled. The
key things are to get the local IP address of the Android tablet correct. Note that this may change unless
you have set the DHCP lease time to be as many days as possible. You will find this option on the DHCP
settings page of your home hub.

NAT - Virtual Server

Yirtual Server for Single 1P Account
_Rula Index |-

Application Home Autormnation
Protocol =

TCP =
Start Port Mumber {’ a0e0 -'i‘
080

End Port Number WNeoso s
Local IP Address 92.168.14 -

-
Start Port{Local) |goso

End Port{Local) q soso | S

Figure 7-30 The NAT Virtual Server setup

Once you think you have made the necessary changes to your router, you will only be able to test it
by asking someone outside your home network to try it. For the ultimate Evil Genius wow-factor, use the
browser on a smartphone with a data contract and turn the WiFi off.

So if your external IP address is 98.76.543.21, enter the URL http:// 98.76.543.21:8080/home? into
the address bar of your phone’s browser. You should see the home page appear on your screen. If you
think that’s exciting, just wait until you can actually turn things on and off!

Theory

http://%2098.76.543.21%3A8080/home

This is a complex project and there are lots of interesting theoretical concepts to explore.

Encoding Data as Sound

When the Evil Genius was nothing more than a Slightly Naughty Genius, he had a home computer. This
was a source of constant amusement for him. The computer did not have a hard disk, nor even a floppy
disk, it just had some wires that led to a battered old cassette tape recorder.

To load a game into the computer, the Evil Genius had to first put a cassette tape into the tape player,
rewind it and press Play (while the Pause button was depressed). He then had to type LOAD into his
computer, release the Pause button, and then press the ENTER key once the tape leader had grunched its
way past the tape head. There would then be a series of strange warblings, possibly for several minutes,
before the massive 3-kilobyte program had finished loading.

This strange warbling is the data for the program encoded as a series of tones. We use this exact
same approach when getting our Android tablet to communicate with the Arduino.

Figure 7-31 shows the oscilloscope trace of just 16 bits of data encoded as sound.

[¥] eHt ims 2 T

Figure 7-31 An oscilloscope trace of output from the Android tablet

This trace is the raw output from audio output. You can make out 16 pulses: four long, four short,
two long, three short, and then three long. The short pulses represent a 0 and the long pulses a 1. So, if we
write out the number in binary, we get 1111 0000 1100 0111, which in hexadecimal is FOC7, the number
that we sent.

If we zoom in on the signal (Figure 7-32), we can see that each pulse is actually made up of a sine
wave at a higher frequency, modulated into pulses. Looking closely at the signal, we can see that the
period for one cycle is exactly 1 division or 1ms, so the frequency of this signal is 1 kHz. Looking back at
Figure 7-30, you can see that we can fit about 4 pulses into a 250 ms division, so each pulse has to fit into
a gap of about 62 ms. When we look at the Android code for generating the signal, we will see that this
figure is actually 64 ms, and that a long pulse is 32 ms and a short pulse 8 ms.

[#] =i I ms 50.0m JI

Figure 7-32 Zooming in on the signal
As well as downloading the Android app that’s ready to use, the source code for both the Sound Test

app and the full automation controller are available as open-source software under a GPL license. You
can download the source-code files from www.duinodroid.com.
The core class that generates the correct sound pulses is called Beeper, and the listing for this is

given next:

http://www.duinodroid.com

The constants at the top of the file define the frequency and pulse durations that the system is going to
use. This class sound interface system could easily be extended to allow much faster data rates and
greater quantities of data, by increasing the carrier frequency (f), the sample rate (SAMPLE_RATE), and
decreasing the pulse sizes. However, we do not have much to send, so I have chosen reliability over
performance. Note that if you do change these parameters, you will probably also need to change the
electronics, too.

The only public method on the class is called “beep” and this takes the 16-bit number to be sent and
converts it into the series of pulses.

To generate the pulses, we actually have to write the samples that make up the waveform into a
buffer, and then play the contents of the buffer as if it were a sound file. The method “fillBuffer” does
most of this work, generating the sine wave using the trig sin function, but only when the “toneRequired”
method says that there should be a tone. It does this by working out which bit we are supposed to be
beeping, and then returning true if the time into that bit is less than the duration for the bit, depending on
whether itisa 1 or a 0.

The Sound Interface Electronics

The schematic diagram for the audio interface is repeated in Figure 7-33, with a test point “A” marked on

it.

Test Point A

L

Audo Input

Figure 7-33 The sound interface schematic

The job of the electronics is to take the small signal from the Android device—probably about
300mV peek to peek (Figure 7-30)—and produce a series of logic level (0—5V) pulses for the Arduino.
It accomplishes this in a series of stages as summarized in Figure 7-34.

iy
— - Fiocth
X1000 ¥

Figure 7-34 A block diagram for the electronics

The first step is to amplify the signal from the Android tablet. We do this using an op amp IC. This
little amplifier on a chip is arranged to have a gain of about 1000. This means that the signal at the output
will be 1000 times the signal at the input. Well, if that were actually the case, the output would be 300V,
but what happens is that the output is limited to the voltage supplying the op amp, which in this case is —
5V. So, in effect the signal will be amplified as much as possible. So that if the signal from the Android
tablet is quite weak, it should still be amplified to a decent level.

Before we move onto the next stage, it is worth looking at how the circuit is supplied with power.

The signal from the Android tablet swings either side of the ground connection, and to amplify it, the op
amp needs what is called a “split” power supply. That is, it needs ground, +5V and —5V. By a cunning use
of the Arduino’s built-in 5V voltage supply, we manage to contrive this arrangement of +-5V and a 9V
supply for the Arduino itself.

Referring to the bottom half of Figure 7-33, we can see that our basic input supply comes as 15V
from a wall-wart power supply. The most negative side of this supplies the -5V for the op amp. We then
use a negative 9V regulator to provide a regulated voltage 9V less than the 15V, which will be our GND
for the op amp and Arduino. This 9V drop also supplies the Arduino, and the regulated +5V from the
Arduino’s own voltage regulator provides the +5V for the op amp.

The next stage after amplifying the signal is to rectify it. Our Arduino could be damaged if we try and
apply negative voltages to an input pin, so we need to make sure that the voltage is always somewhere
between GND and +5V. The diode accomplishes this task. However, we still have the problem that each
pulse is actually made up of a 1-kHz wave, and we need to remove that signal so we are just left with the
“envelope” of the pulses. We use a low-pass filter to accomplish this. This just comprises the resistor R4
and C2. This also has a bit of a distorting effect on the signal, but it doesn’t matter.

Figure 7-35 shows the oscilloscope trace of the signal. The top trace shows the amplified signal at
test point A and the bottom trace the signal after rectification and low-pass filtering,

Figure 7-35 Rectification and filtering

Figure 7-36 is a close-up of the final signal. The Arduino digital input will treat everything above
the 3V line as a 1, and everything below as a 0. So at that level, a long pulse will have a duration of about
40 ms, and a short pulse about 20 ms.

Figure 7-36 Close-up of the final signal

Decoding the Sounds on the Arduino

Our signal is at last in the Arduino, and we just need a way of decoding the pulses of varying length into a
number.
The test sketch for this is shown in the following listing.

The first thing that we do in the sketch is define a few constants for the maximum and minimum pulse
lengths. There is also a timeout set after which the software gives up on reading the number and starts
again from the first bit.

Any Arduino “sketch,” as programs are called in the Arduino world, will contain a setup and a loop
function. The setup function is run once when the Arduino resets, and “loop” will be repeatedly
indefinitely.

The setup function defines the pin (A4) to be the pin on which we are going to receive the pulses. It
then initializes the serial connection so that the Arduino can send messages over USB to the Serial
Monitor, and finally sends the message “Ready” to the computer.

Next, we define a few variables. The variable “result” will eventually contain the number sent to the
Arduino. The value of “result” is built up literally bit by bit, and the variable bitNo is used to keep count
of how many bits have been read. Finally, lastPulseTime contains a timestamp for when we last received
a pulse. This allows the mechanism to timeout if no pulse has been received for a while.

Most of the action in this sketch takes place in the loop function. This function will be called
repeatedly. Each time it is called, the first thing that happens is that the pulseln function in the Arduino
library is called. This waits for a pulse, but if none is received within the time period specified in the
third argument (in this case, twice the duration of a “one”), the function returns 0.

The next lines test to see if a timeout has occurred. This could be because pulseln has timed out, or
because the time since the last pulse has been exceeded. If this is the case, then we start again from the top
and the bitNo and result variables are reset.

Otherwise, we test the duration of the pulse to decide if it’s a binary 1 or a binary 0 and modify the
result variable and increment the bit count.

The last thing we do in the “loop” function is see if we have read all 16 bits, and if we have, it sends
the resulting number to the serial port, where it will be passed to the Serial Monitor.

Summary

This concludes the project work for this first chapter. We now have a basic home automation controller.
In the next chapter, we will make it actually do something useful: turn the power on and off on our
appliances.

CHAPTER 8
Power Control

THE EviL GENIUS USED TO use minion-based remote control. This worked by standing a minion next to
each light switch, and when the Evil Genius required the light to be turned off, he would shout an order at
the minion, who would turn the light off. A number of aspects of this technology were a little
unsatisfactory, however—for example, when the light went out, the minions would sometimes fall asleep.
Also, the minions were liable to wander off at an inopportune moment, leaving the Evil Genius barking
orders that went unanswered, with dire consequences afterward for both the hapless minion and the Evil
Genius’ vocal chords.

The Evil Genius therefore decided that the first use of his Lair Automation system should be to
control lights and power.

It is perfectly possible to buy remote control home automation units that connect to lighting and
power sockets using the X10 protocol. These are, however, quite expensive, and being on a budget, the
Evil Genius decided to use cheap, readily available RF (radio frequency) remote power sockets from his
local supermarket (Figure 8-1). For around USD 25, this provides three or four remote control AC outlets
and a remote control handset.

Figure 8-1 A remote control wall socket

Note that the model shown is for the UK market, with the UK’s unique style of mains outlet. Similar
units are available for U.S., Asian, and continental European styles of outlet.

We are going to modify the remote control handset so it can be driven by the Arduino of our home
automation controller. In effect, the Arduino is going to be pressing the buttons.

We will use these cheap remote control outlets for both power outlets and lighting. For the lighting,
we will need to modify the connections to them, to make them suitable for controlling domestic lighting.

Power Control Electronics

The Evil Genius has used a certain amount of cunning in producing this design. He is using the existing
remote control for a power outlet and employing small reed relays to do the equivalent of pressing the
buttons on the remotes.

This is all built onto a handy board that will allow our Arduino to control the remote for the power
outlets. We could, if we wanted, use this module entirely independently of the Android tablet and just
control the power from our computer using the USB connection. In fact, for test purposes, this is exactly
what we will do, before we start connecting things up to the sound interface and Android tablet.

Figure 8-2 shows the assembled board. Note that it is on a large piece of “perfboard,” because we
are leaving room to add other parts as we proceed with the other home automation projects. “Perfboard”
or “perforated board” is a prototyping board rather like the stripboard that we used in earlier projects,
except that it is just board with holes in it at 1/10 inch pitch, without any copper strips on the back.

Figure 8-2 The power outlet remote control by Arduino

Constructing the Power Control Module

Figure 8-3 shows the schematic diagram for the power control module.

- . e . — 8. — o -
‘—f’J ‘—-’.’] ~f.".—~! ! ‘--f.f-— ‘f —~

mm M U M |m |["
'I

[
b
1
1 i
O
] |

L
1

-_'\Ii_a-._h_,'
P —

Figure 8-3 The schematic diagram for power control

The Arduino has eight low-power reed relays attached to digital outputs. When one of the outputs is
high, it energizes the relay coil, which closes the relay’s switch. This switch is soldered across the
terminals that would normally be closed when a button was pressed.

The use of relays might seem a little old fashioned, but a more sophisticated approach using
transistors would depend too much on the type of remote used.

What You Will Need

You will need the components listed in the Parts Bin to make the power control module.

PARTS BIN
Part Quantity Description Source
Remote outlet kit | See the following deseription ¢Bay
Relay 1-8 B SV EPST reed relay cBay
D1- 8 IN4001 diode Farnell: 1458986
Perfboard 1 Famnell: 1172145
Header pins 1 Strip of 40 header ping Farnell: 1097954
Muts and bolts 4 Small nuts and bolts for fixing the perfboard

There are a number of different remote outlets available on the market, and at the time of writing the
construction will be simplest if you can find a device as similar as possible to that used by the author.
This uses UK mains outlets and costs less than USD 10 for the remote and three remote control outlets. It
was bought from a local supermarket. Other similar items are available in the U.S., including devices
from La Crosse (RS-204U), Stanley (31164), and Woods (13568). Of these, the La Crosse is the closest
to the device used by the author. But have a good look around because new devices are always coming on
to the market. The system used by the author is shown in Figure 8-1.

The features to look for in a remote control power outlet set are:

» Essential, RF (Radio Frequency) NOT infrared.

» Essential, separate on and off buttons for each channel. Some remotes have one button that toggles. Do
not use one of these.

» Desirable, four channels. If you can only get a device with three sets of on/off buttons, you can still build
it, just leave out one set of relays.

» Desirable, dynamic outlet allocation. Some sets are hard-coded—that is, the button 1 will only switch
the outlet with 1 printed on it. Others, such as the one the author used, allow you to “program” any
outlet to be associated with any channel on the remote. This lets you set up groups of outlets all
switched from the one channel, which adds a lot to the flexibility of the system. Indeed, you can buy
extra sets of outlets to use from the one remote handset.

You are going to need eight reed relays. These can be expensive when bought from a conventional
component supplier, but you should be able to find a lot of 10 for a few dollars on eBay. Look for ones
that have the same pinout as that used by the author (see Figure 8-3). This should not be hard, as it is
something of a standard pin configuration.

In addition to these components, you will also need the following tools listed in the Toolbox.

TOOLBOX

L 4

» Soldering equipment
s Multi-core wire in various colors
= A multimeter

L

Step 1. Disassemble the Remote Control

The first thing to point out is that you will most definitely be voiding the warranty, as we are going to be
taking the remote apart and soldering leads to the circuit board.
The remote control used by the author is shown in Figures 8-4 and 8-5.

Figure 8-4 The remote from the top

il

|-

s tititd

*n

¢

Wl

Figure 8-5 The remote from underneath

For the purposes of comparison, a different remote from another manufacturer is shown in Figures 8-
6 and 8-7. The similarities between the two units are obvious.

Figure 8-6 The alternative remote from the front

Figure 8-7 The alternative remote from underneath

Step 2. Attach Leads to the Remote Control PCB

Referring to Figure 8-4, what we are going to do is attach leads to each of the eight push switches on the
main part of the board, as well as a lead for each of the two battery connections at the bottom of the
figure. Note that we are not interested in the “All on” or “All off” buttons if the remote has such a feature.
If we turn the board over (Figure 8-5), we can see where the push buttons are soldered into place.
Each button actually has four connections, but we only need to find two which get connected when
someone presses a button. This can be done using a short length of wire, since the remote will have a
little LED that comes on when a button is pressed. The procedure is as follows:

1. Fit the battery into the remote.

2. Identify the four connections for one of the switches.

3. Use the wire to short two of the connections for the switch, while watching to see if the LED comes on.
4. Make a note of the combination that works.

5. Repeat for each switch. You will probably find that it’s the same pattern for every switch, but check.

Now cut lengths of solid core wire about half an inch (10mm) in length and solder them to all the
contact points on the PCB, as shown in Figure 8-8. Note also the leads attached to the battery terminals.

Figure 8-8 Soldering leads to the switches

Step 3. Place All the Components on the Perfboard

We are going to mount the remote control, the reed relays, and the Arduino onto a piece of perfboard.
This material is rather like the stripboard we have used before, but without the strip. That is, it is just
board drilled at 1/10-inch pitch. The idea is that you push components through from the top and solder

them up underneath, connecting them together with wire. Figure 8-2 is what we are aiming for. Figure 8-9
shows the exact layout.

‘harw froem ay Bofiom of the boamed

Figure 8-9 The perfboard layout

You may well have to adjust the spacing for your remote.

It is a bit fiddly getting all the wires on the remote to line up with holes in the perfboard. It can help
to make them as straight as possible before trying to fit them onto the board, then use a screwdriver to

nudge errant pins towards the hole. When all the pins are through the holes, bend some of them over just
to ensure it stays in place.

Now we can place the reed relays, making sure they are the right way around (see the pinout on
Figure 8-3). Afterward, place the diodes, again making sure they are the right way around.

The Arduino board is attached by pin headers. As you can see from Figure 8-10, not all of the four
rows of connections on the Arduino are used. There are two reasons for this. First, we do not need all the
connections, and second, for some reason best known to the designers of the Arduino, the gap between the
groups of pins on one side of the board (the left-hand side in Figure 8-10) do not fit a 0.1-inch pitch.

Figure 8-10 The back of the perfboard

The Arduino is going to be attached using pin headers, so break three lengths off the header strip, one
with eight pins and two with six pins each.

The best way to get the headers in the right position is to fit the headers into the sockets on the
Arduino board (Figure 8-10) and then turn it over and fit it onto the perfboard.

Step 4. Solder the Connections

There are a lot of connections to make, and many wires cross over each other, so use insulated solid core
wire for the connections. When all the connections are made, the back of your board should look like
Figure 8-10.

It’s not a bad idea to photocopy Figure 8-9 and check off each connection with a pen when it has
been made.

When you think you have finished, go back through and check them all again.

Now, we are ready to test the board.

Step 5. Testing

To test our creation, we need a 9V power supply. If you do not have one, use the 15V power adapter and
the 9V output from the sound interface you built in Chapter 7.

The web site www.duinodroid.com has a test sketch we can use (chO8_test_power). As we have
already downloaded all the sketches, all that remains is to upload it onto your Arduino board. If you are
not sure how to do this, please refer back to Chapter 7, Step 7.

Connect up the 9V supply to the Arduino, and from the Arduino software, launch the Serial Monitor

(Figure 8-11).

[o P M] fdevtty usbserial-A7006RgK
A | Send)

-Rém;:.: enter one of: Ao BbCcDd

Autoscroll "No line ending T! 9600 baud T]

Figure 8-11 The Serial Monitor for power test sketch

The options shown by the sketch are the letters A to D in uppercase and lowercase. Typing an
uppercase “A” into the Serial Monitor and pressing RETURN will send the command “A” to the Arduino
board, which will effectively press the On button for channel A of the remote. Pressing lowercase “a”
will turn it off.

To start with, just send each of the commands in turn and make sure the LED on the remote control
lights up as if you had manually pressed the button. If this does not happen for one of the commands, check
the wiring diagram of Figure 8-9 to try and find the problem with your board.

Now the exciting bit!

Plug one of the remote controlled outlets into a mains outlet and plug a table lamp into the remote
outlet and turn it on. If your outlet is the type that needs programming, set it to the first channel on your
remote. This is often done by pressing and holding the button on the front of the outlet until the LED
flashes and then pressing a button on the remote.

Check that the remote still works normally by pressing the buttons on the front to turn the light on and
off. Now we can try doing the same thing by sending the commands “A” and then “a” to the Arduino
through the Serial Monitor.

Repeat this procedure for each of the channels on the remote to make sure that everything is working
okay.

This is a useful project in its own right, as it allows you to control the power of devices remotely
from your computer. However, our main use for this is to integrate it into our home automation system,
which is exactly what we will do in the next section.

Adding It to the Home Automation Controller

We now know that our power control board works with the Arduino. It is time to take the next step and

http://www.duinodroid.com

integrate it into the rest of the automation controller. To do this, we will attach the sound interface board
from Chapter 7 to the perfboard, and make the connections from the sound card to the Arduino +5V and
A4 pins. Figure 8-12 shows the revised wiring diagram for the project.

Wiatrey legwms T Bomiom of thes Boaed

[N
. FEE3

Figure 8-12 The wiring diagram with the sound interface

Figure 8-13 shows the board from the top with the sound interface attached. Notice how the Arduino
is now receiving its power from the 9V flying lead and plug from the sound interface, and the 3.5mm
audio plug is ready to be plugged into the headphone output of the Android tablet.

OMINOEY

Figure 8-13 The power control board with the sound interface attached

Before we fit everything into the box. Let’s try the system out on the bench. To do this, we will use
the full “Home Automation” Android application, but employ the “ch07_sound_test” sketch, which we
have just used on the Arduino board. This will let us check that the messages we are sending from the
Android tablet are being received correctly, before we change over to using the proper Arduino sketch.
So upload the “ch07_sound_test” to the Arduino board.

Make sure everything is connected up, that is:

» Connect the 15V supply to the sound interface board.
» Connect the 9V plug from the sound board to the Arduino.
» Plug the 3.5mm headphone plug into the
Android tablet.
» Plug the Arduino board into your computer and open the Serial Monitor.
w» Start up the Home Automation app on the Android tablet and make sure the sound is turned up.

Open the browser on the Home Automation app and click the “Light and Power Outlets” button. Now
press the button to turn on Outlet 1. The Serial Monitor should display the number 0101. Click “Off” for
that outlet. It should say 0100.

Now we can replace the test sketch for the Arduino with the real one. As usual, this can be
downloaded from www.duinodroid.com with the other sketches for the book. The sketch is called
“ch07_sound_test.”

The easiest way to test the system is to attach a table lamp to one of the remote outlets, run the Home
Automation app on the Android tablet, launch the browser, and go to the “Lights and Power Outlets” page.
If the outlet is of the type that must be programmed to respond to a particular control, then we need to do
this instead: Press and hold the button on the front of the outlet until the LED flashes and then press the
“On” button in the browser you want to associate with that outlet. I suggest using the first outlet. The outlet
LED should stop blinking to indicate it has been programmed.

If you are using the type of remote outlet system with preprogrammed numbered outlets, then you do
not need to carry out the preceding step.

You should now find that you can turn the lamp on and off from the Android tablet. I will leave you
alone now to try out all the various features of the home automation controller, and perhaps try connecting
to it through another computer on your network, or even from the Internet (see Chapter 7).

Once you have recovered from the excitement, you need to fit everything neatly into the project box.

We already have the basis for a boxed project following Chapter 7; however, we now need to
accommodate our power control perfboard. So, some more holes must be drilled into the project box. We
need holes for four screws to attach the perfboard, a hole for the 15V power socket attached by flying
lead to the sound card, and optionally a hole big enough for a USB cable to be attached to the Arduino
board. This last hole is only really necessary if you plan to modify your software on the Arduino.

The perfboard should be secured to the base of the project box with nuts and bolts (Figure 8-14).
You also need to fit and re-solder the power socket.

http://www.duinodroid.com

Figure 8-14 The inside of the project box with perfboard attached

Setting Up Your Home

Connecting the power outlets is easy enough, and if you have the kind that are programmable, you will
probably want to associate a group of power outlets with one channel on the home automation controller.
For instance, using a series of remote control outlets, set up all the appliances you want to turn off at
night.

Figure 8-15 shows the arrangement of outlets used by the author. All the downstairs lights are
grouped onto one channel—handy for bed time.

M@ 12:37Pm

HomeAutomation

Downstairs Lights|

Minion Dorm 1

Minion Dorm 2

Figure 8-15 An example setup for home automation
The main audio visual and TV appliances in the living room are grouped onto another channel, and
the minions’ sleeping quarters onto the remaining two channels.

As well as outlets, it is also really useful to be able to control ceiling and wall lights. This is more
difficult than the wall outlets. The most direct approach to this unfortunately requires some expertise in
wiring. It should therefore only be carried out by a suitably qualified electrician.

You can convert a remote control power socket to control lights using a screw terminal block (see
Figure 8-16). Do not take this step unless you are suitably qualified to alter your domestic wiring.

Figure 8-16 Converting a remote control outlet for lighting

Theory

In this chapter, we will examine the software for our project, in particular the two Arduino sketches we
used, “ch08_test_power” and “ch08_home_automation.” But first we will look at some of the electronics
in this project by examining the relays we used to simulate button presses on the remote control.

Relays

Relays are, in electronics terms, an ancient technology. They were around before vacuum tubes, and were
used as switches to control power and operate telephone exchanges. For many applications, they have
been replaced by transistors and ICs. However, they still have a place in the high-tech world.

The type of relays used in this project are called reed relays (Figure 8-17). They are no good for
switching high currents, but they are fine for this project. They also have the great advantage that, unlike
most relays, they can be controlled directly by an Arduino board without needing a transistor.

Figure 8-17 A reed relay
So, what exactly is a relay? Well, it has two parts that are electrically isolated from each other.
There is a coil that acts as an electromagnet and a switch that is activated by the electromagnet. In the

case of the reed relay, the switch is made by two thin contact reeds in a small sealed glass envelope. This
makes them very reliable and long-lived.

Test Sketch

Here is the code for the Power Test sketch we used earlier.

/¢ Power Control test sketch

#define AomPin 16
#define AoffPin 17
#define BonPin 14

#define BoffPin 15
#define ConPin 8§
#define CoffPin S
fdefine DonPin 11
#define DoffPin 10

#define ButtonPressPeriocd 500

int onPins[] = {AonPin, BonPin, ConPin,
DonPin} ;
int offPins|[] = {AoffPin, BoffPin,

CoffPin, DoffPin};

void setupl)
{
for J{int i = 0; 3 = 4: d4+]
{
pinMcocde{onPins[i] , OUTFUT] ;
pinMode (cffPins[i], OUTFPUT) ;
1
Serizal . hegin(9600]) ;
Serial.println("Ready enter cne of:
Aom B bC g Dod");

Rl

void loopl)
{
int channel = 0;
if (Serial.available(])

{

char ch = Serial.readl);
1f fech == 'a' && ch == 'd'}
i
channel = ¢ch - 'a';
pressButton{channel, offPins);
}
else if {ch == 'A' &&% ch == 'D'}
i
channel = ¢ch - 'A';

pressButton{channel, onPins};

vold pressButton(int channel, int
column(])

digitalWrite(column[channel], HIGH] ;
delay (ButtonPressPeriod) ;

digitalWrite({column[channel], LOW):

L

The first thing we do is use #define commands to specify all the Arduino pins we will use. Note that
we are using the analog pins of the Arduino as digital pins. This is possible with the Arduino software,
which allows you to address the analog pins AO to A5 as if they were digital pins by adding 14 to their
pin number. So 16 becomes A2, 17 becomes A3, and so on.

We then define another constant—ButtonPressPeriod—that specifies the time in milliseconds for
which each relay should be closed to simulate a button press.

To make it easier to access the pins concerned with the relays, we group them into two arrays, one
for the “on” pins and one for the “off” pins.

The “setup” function makes all those pins outputs, as well as initializes the serial connection back to
the Serial Monitor.

As usual, most of the action takes place in the main “loop” function. This checks to see if a command
has been sent over the Serial Monitor (Serial.available) and if one has, and it’s between “a” and “d” or
“A” and “D”, it works out the channel number between 0 and 4 and then calls the function “pressButton”
with the channel as one argument, and the “turning on” array or “turning off” array as appropriate.

The “pressButton” function then turns on the appropriate output pin, which will in turn activate the
relevant relay to press the button and turn on the channel.

Real Sketch

The real sketch for the home automation controller is a combination of the sound test sketch from Chapter
7 and the power test sketch we have just looked at.

#include <VirtualWire.h>

#define soundPin 18

#define zercDuratlionFrom 10000
#define zeroDurationTo 25000
#define oneDurationFrom 35000
#define oneDurationTo 50000
fdefine resetTimeout 3000

#define AonFin 16
#define AoffPin 17
#define BonPin 14
#define BoffPin 15
ffdefine ConPin 8
#define CoffPin 9
#define DonPin 11
ffdefine DoffPin 10

$define ButtonPressPeriod 1000

int onPins[] = {AcnPin, BonPin, ConPin,
DonPin};

int offPins[] = {[RoffPin, BoffPin,
CoffPin,; DoffPin):

int remote = 0;

void setupl()
{
pinMode (goundPin, INPUT) ;
for [int 1 = 0; i < 4; i++)}
{
pinMode (onPins[i], OUTPUT);
pinMode (offPins([i], OUTFUT) ;
}
vw_set_ptt_pin(5); // out of the way
vw_set_rx pin(d}; // out of the way
Tw_set ptt_inverteditrue};
vw_setup (2000} ;
Serial .begin{9600) ;

unsigned int resulkt;
int bitHo = 0;
long lastPulseTime = 0;

void loopl)
{

long pulselength = pulseln(soundPin,
HIGH, oneDurationTo * 2);

long timeSincelLastPulse = millis({) -
lastPulseTime;
lastPulseTime = millis();
if (pulseLength == 0 ||
timeSincelastPulse > rezetTimeout)
{
LitHe = D7 zresult = 0;
}
else
{
if (pulselength >= zeroDurationFrom
k& pulselength <= zeroDurationTol)
{
result = result << 1;
bitNG ++;
1
else if (pulselength ==
cneDurationFrom && pulselength
<= S0000)
{
result = (result << 1) + 1;
bitNo ++;

I
if {bitNo == 16)

processiWord({result) ;
bitNe =05 result = 0;

void processWordiint message)
{
int device = message => B;
int action = message & Ox00FF;
Serial.print({"Device: ");
Serial.print(device);
Serial .print{* action: Yj;
Serial .printlniaction};
if (device > 0 && device == 4}
{
processPower (device, action);
b
alze

{

processBadic{device, action);

void processPower(int device, int
action)

if (action)

i

pressButton (device, onPins);
i
elsea
{

pressButton(device, offPins);
}

void processRadiol{int device, int
action)

uint® t msgl2];
meg[0]
msg[1]

luintB_tidevice;
(uint8_tlaction;

1]

vw_send({uintB_t *ilmsg, 2);:
delayv (400} ;

vold pressButton{int channel, int

columtna[])

int pin = column[chammel — 1];
digitalWrite (column[channel-1]

HIGH) ;
delayi{ButtonPressPericd) ;
digitalWrite{columnfchannel-1]1, LOW);

delay{ButtonPressPeriod) ;

As with the previous sketch, we start by using #define to declare some constant values, such as the
pins we will use for the relays, as well as the durations for the pulses coming from the sound interface
(see the “Theory” section of Chapter 7).

In this case, once all 16 bits have been gathered, they are passed as the parameter result to the
function “processWord”. This splits them into “device” and “action”. If the device is in the range 1 to 4,
then we know it is one of the power channels, so we call the same “pressButton” function we did in the
previous sketch.

This sketch also includes code to handle the door and the heating thermostat—in fact, both are
handled by the “processRadio” function and thus can be disregarded for now.

Summary

Our home automation controller is now a useful device. We can turn things on and off from anywhere, as
well as set times. In the next chapter, we will extend this design a bit further by adding a link to a heating
thermostat.

CHAPTER 9
Smart Thermostat

MINIONS ARE NOTORIOUSLY DIFFICULT to keep at the right temperature. Too cold and they become
hypothermic, and just sit there looking blue and are incapable of carrying out their master’s evil schemes.
On the other hand, if they get too hot, they tend to perspire heavily and drip all over the Evil Genius’
plans for global domination.

This project provides the last word in temperature regulation. It not only acts as a standalone
thermostat, but also has a RF link from the Home Automation controller, that lets you set different
temperatures for different times of day.

The home automation will tell the thermostat its new set temperature regularly every 10 seconds
over the wireless link. To give us some feedback that everything is working, the LED will blink twice
each time it receives a message.

To keep the project small and reduce costs, the design uses the microcontroller from an Arduino, but
takes it off the Arduino onto a piece of stripboard. The Arduino is used to program the microcontroller,
but then is replaced with another microcontroller chip. An ATMega328 used in an Arduino is readily
available and costs around USD 5.

Figure 9-1 shows the thermostat, which just has an override switch, a control knob, and an LED.

Figure 9-1 A smart heating thermostat

Most of the software for the home thermostat belongs with the Home Automation controller, which
provides a nice touchscreen graphical mechanism for setting the temperature profile (Figure 9-2). There
are two pages for setting the temperature profile. One for weekdays, and one for weekends. The day is
divided up into time slots.

a0 Ml @ 6:37am
http://10.0.2.15:8080/heatingD? H

Mon-Fri Heating

oo -06 (=R o [2] (L2

ETE T [dF |
12-15 15-16 1617 1722 323 23-24

T T =N TN

Save Changes

Figure 9-2 The home automation controller—temperature control

So, 01-04 refers to 1 a.m. to 4 a.m. The temperature for each time slot is set from a dropdown list.

If you flip the thermostat’s “override” switch, it stops using the temperatures being sent from the
home automation controller and just uses the temperature set on the control dial.

Construction

We need to build the thermostat itself, but we also need to modify the home automation controller,
providing it with the RF transmitter and updating the software on its Arduino.

It is best to make the thermostat first, so that we can use it to test that the modifications to the home
automation controller were successful.

Apart from the microcontroller IC and a few supporting components, there is just a transistor, a
relay, and a RF receiver module on the stripboard. We use a reclaimed 5V power supply from a mobile
phone charger. If you do not have such a thing, then a normal “wall-wart” power supply can be used.

Figure 9-3 shows the relationship between the thermostat, the central heating system, and the home
automation controller.

Set Temperature h
Home Automation armaosiat

Controller " /
]

Heating System

Figure 9-3 The home automation controller and thermostat
Figure 9-4 shows the schematic diagram for the thermostat.

Figure 9-4 The schematic diagram for the thermostat

CAUTION
This project switches high-voltage domestic electricity and involves modifying the wiring to
your home heating system. Domestic household electricity kills many people each year and
starts hundreds of fires in the U.S. alone.

You should only install this system if you are suitably qualified to do so and have a good
understanding of the safety implications of altering your home’s wiring.

What You Will Need

You will need the following components in the Parts Bin to make the thermostat.

PARTS BIN
Part Quantity Description Source
Microcontroller | ATMega328 with bootloader Sparkfun: DEV-10524
RF receiver 1 433-MHz receiver module Farnell: 1304026
RF transmitter | 433-MHz transmitter module Farnell: 1304024
Relay 1 5 or 6V relay Farnell: 14535502
RI 1 100kLY variable resistor
Knob I Kneb to fit R1 Farnell: 1282303
R2 1 47041 0.5W metal film resistor Farnell: 1099883
R3 | 27000 0.5W metal film resistor Farnell; 9340300
R4 | 1kL) 0.5W metal film resistor Farnell: 9339779
RS 1 4. 7kL) 0.5W metal film resistor Farnell: 9340629
Cl | 100nF ceramic capacitor Farnell: 1200414
C2,C3 2 22pF ceramic capacitor Farnell: 1600966
Xl 1 16-MHz crystal Farnell: 1611761
(B3] | [N4001 Farnell: 1438986
D2 1 Smm red LED Farnell: 1712786
IC1 I DSIRR20 Sparkfun: SEN-00245
Tl 1 BC548 Farnell: 1467872
51 | Plastic rocker switch Farnell: 16346435
IC socket 1 28-pin DIP 1C socket Farnell: 1824463
Power supply | 5V power supply See description
Terminal strip 1 2-way 2A screw terminal strip Hardware store
Striphoard 1 29 strips of 24 holes Farnell: 1201473
Box 1 Small project box RS/local electronics store

You will also need an Arduino Uno or Duemilanove to program the ATMega328 or ATMegal68
chip. When you buy this, make sure you get a version with the Arduino bootloader already installed on it.

There are many 433-MHz RF modules available on the market, and most have the same simple-touse
pinout. But check the datasheets for the modules you intend to buy against Figure 9-4 to make sure they
have the same pin connections.

The choice of relay depends on which country you live in. It will need to have a 5 or 6V coil. The
contacts must be of a similar specification to the thermostat you are replacing. If you are not sure what the
current and voltage requirements of the relay contacts are, consult a heating engineer. Please note that the
relay specified was suitable for the author’s central heating system. The author has no way of knowing if
this is suitable for your own heating system, so do the research.

The minions go through cell phones like there’s no tomorrow. So there are always surplus chargers
in the lair, ancient relics of long superseded phones. Of course, the Evil Genius likes to do his bit to save
the planet—just before conquering it.

To this end, we are going to reuse one of these chargers to provide the 5V power to the thermostat. If
you do not have one, you will have to buy a 5V wall-wart style power supply.

In addition to these components, you will also need the tools listed in the Toolbox.

TOOLBOX

lJ 1

» Soldering equipment
w» Craft knife and ruler
» Hot glue gun or epoxy glue

m Multi-core wire in various colors
m A multimeter

L T

Step 1. Prepare the Stripboard

Figure 9-5 shows the stripboard layout for the thermostat.

1 2 3 4 5 6 7 8 9101112 1314151617 18 1020 21 22 23 24

1 Ant [
2 .
3 -
4 . e — e
5 Retay =
g Cod
7 L rr— .
B
9 L]
10 1Y 28 H
1 X e X .B R1 +V
12 i L »
13 4 ¥ 25 R —
: ssvf L | K & - i | A1 GND
+5.u,//1:" Datal I e 6% 23 — i
16 Datsd| » v % ™ez | e L
1 - L Y 2
GN;’.‘J-"‘""‘-TQE——.‘ GNC!—- 9§ 20

19 3 10 19
20 1Y 18
3 12% 17]
22 13X 16 []
23 14 15 Ic1 —
24 []

LED - 25 @5 i =3

-‘-‘-‘\‘21?'". ‘L] —

27 l

LED + ")
2

123 4 5 67 8810111213 14151617 181920 21 22 23 24

Figure 9-5 The stripboard layout

Cut the board to the right size. The neatest way to do this is to score the board heavily with a craft
knife and then break it over the edge of a table. You can also use a strong pair of scissors, but the result
will not be as neat.

As you can see, there are quite a few cuts to be made in the board. As with the sound interface in
Chapter 1, use a drill bit to make breaks in the track where indicated. Note that the board is shown from
the top in Figure 9-5.

When all 19 breaks have been made, your board should look something like Figure 9-6.

S ATS LA Tatatarathincn)
nOnnoagaag
Y3 s talatslatal
OOOO0a0000
LTI
b T "‘J“ B BB N .E

.nu'
WL e [.']fluuf]l']ﬂf'] ._IFIC[EI
I els (53(ais » s s a'ais s aiss,
£ O 4]'rT~‘J".'lﬂt'.Iﬂf']f1(_‘lﬂl‘Iﬂ

Figure 9-6 The prepared stripboard

Step 2. Solder the Links and IC Socket

The next step is to solder the wire links onto the board (Figure 9-7). Again, there are a lot of these (11),
so take care that you have made all of them and got them all in the right places.

LA L O L L)
srelw i elele

Figure 9-7 The stripboard with links

Step 3. Solder the Resistors and Diode

We can now start on the real components. As always, begin with the lowest profile components first. That
means the resistors and the diode, then solder in the capacitors. When soldering the diode, make sure it is
the right way around. The striped end should be toward the bottom of the board.

R5 is mounted vertically, so leave it until the next step when we solder in the capacitors and higher
components.

Once they are all soldered into place, you can solder the IC socket. It is a good idea to arrange the
socket so it has the little cutout marker to indicate the end with pin 1 toward the top of the board.

Figure 9-8 shows the board with all these components in place.

TN &a
o :
-

&
e

-

B R
¥
s

+7
L

-
-
&
L)
L=

L RO L B e

T O
L

LA

Jafeleialielalealle)

Figure 9-8 The stripboard with resistors and capacitors

Step 4. Solder the Remaining Components

The remaining components can now be attached. Take care with IC1 and T1 to ensure they are both the
right way around and that you do not heat the leads for too long.

We only use the bottom four pins of the RF receiver module; however, if your thermostat is a long
way from the home automation controller, you may need to attach a wire to the ANT connection to act as
an antenna. The wire should be about 100mm long.

When everything is connected up, it should look something like Figure 9-9.

Figure 9-9 The completed stripboard

At this point, a thorough inspection of the board is a good idea. Inspect the top of the board to make
sure all the components and links are in the places indicated in Figure 9-5, and check the bottom of the
board to make sure all the breaks are in the right place and that there are no accidental bridges of solder
between tracks.

Step 5. Program and Install the Microcontroller

We need to program the microcontroller with the Arduino sketch to control the thermostat. The easiest
way to do this is to use an Arduino board.

It usually makes sense to program the microcontroller IC that’s already in the Arduino board and
replace it with the chip you bought, once the chip has been transferred to the stripboard.

The sketch uses three libraries, two for the temperature sensor (OneWire and DallasTemperature)
and the VirtualWire library for the RF receiver. You have probably already installed the VirtualWire
library in Chapter 8. You will, however, have to install the other two libraries into your Arduino
environment on your computer.

The procedure is the same as for all libraries (see Chapter 1), and you can download the OneWire
and Dallas libraries from www.hacktronics.com/code/OneWire-v2.zip.

So, just install the sketch (ch09_thermostat) onto the Arduino board. Then, with the power
disconnected, carefully remove the IC from the board and fit it into the socket on the stripboard, making
sure it’s the right way around.

When removing the IC, be very careful because it is easy to bend or break off the pins. Ease the IC
out at each end of the socket using a knife, a bit at a time until it comes loose. You should also observe
anti-static precautions, at least touching grounded metal to discharge yourself before touching the device’s
pins. An earthing strap is another option.

Step 6. Connect Everything Up

The board is now complete, so after a thorough inspection to make sure there are no unwanted solder
bridges between tracks, we can connect everything up (Figure 9-10). We will not fit it into its box until
we are sure everything is working.

http://www.hacktronics.com/code/OneWire-v2.zip

Figure 9-10 Connecting up the board

We are using a redundant mobile charger as the power supply. We do not need a powerful charger—
as long as it is 5V and can supply at least 100mA, it will be fine. With the charger unplugged, cut off the
plug at the end of the lead and strip the wires so you can attach a multimeter and test the voltage. First,
make sure it is indeed a stable 5V, and second, determine which is the positive lead. For now, the wires
can be soldered directly to the stripboard.

Next, we attach the leads to the variable resistor. Note that the order of the leads to the variable on
the stripboard are not in the order you might expect. Looking at the back of the variable resistor, with the
leads downwards, the positive lead will be on the left, the negative on the right, and the slider in the
middle.

The switch and LED should both be attached using short lengths of multi-core wire. It is a good idea
to use color-coded leads for the LED, so as to prevent accidentally getting the polarity wrong.

The leads to the relay coil can be connected either way around. Glue the relay to the board and
attach the coil leads. Solder the leads to the normally open relay contacts and attach them to the terminal
strip. Many relays follow the layout shown on Figure 9-4; however, you should check this for your relay.

Set the switch into override mode (closed) and connect the power adapter. You should find that
turning the variable resistor clockwise will lead to the LED coming on and the relay contacts being
closed. Being in override mode, the variable resistor will be setting the temperature, so a high
temperature setting that is warmer than the temperature sensed by the sensor should have the effect of
turning on the heat.

You might like to experiment by adjusting the variable resistor until the LED is just on, and then
putting your finger onto the temperature sensor to warm it up. When the temperature exceeds the set point,
the LED should turn off again.

That is as far as we can go with testing until we have modified the home automation controller.

Step 7. Modify the Home Automation Controller

We need to add the RF transmitter to the perfboard for the home automation controller. Figure 9-11 shows
the modified home automation controller perfboard layout.

_.

<
T
|

R e
| | 4 \

T

.
-

bk
o
M

B e
i

Figure 9-11 The modified perfboard layout

The transmitter module is smaller than the receiver module and sits to the side of the sound interface
board. The data connection from the transmitter is connected to D12 of the Arduino, with the other
connections being GND and +5V to Vcc. As with the receiver, you can also connect an antenna in the
form of a length of wire attached to the ANT connection of the transmitter, although this is not usually
necessary over short distances.

The front and back of the modified perfboard are shown in Figures 9-12 and 9-13, respectively.

:::::::

B . & 8.6 8 @ %
Y 8 8.8 & ® @

s & & & & & & &

[B I L B R

L]
v w9

& &5 ¥ & ¥ & ® @
* " % ¥ 8

e T T T Y
- 8 8 & 8 B W

P

LB USSR R BRSO AN TR IS OB NN O B R
o
]
™

- 88
¥ 8 8 0¥
@ & 0 ¥ W

Figure 9-12 The front of the modified perfboard

Figure 9-13 The back of the modified perfboard
The Arduino sketch that we originally uploaded onto the board included the code for the transmitter,
so we do not need to update it.

Step 8. Test

We are now in a position to test the project with the home automation controller. So, turn everything on
including the home automation controller and set the switch on the thermostat so that override is off. After
perhaps 10 seconds, the LED should flash twice. This will indicate that the home automation controller
has sent a set temperature to the thermostat.

Unless it is extremely cold, the LED and relay will be off, as the default temperature is 30° F.

Go to the appropriate “Mon—Fri Heating” page on the controller, and for the time-slot for the current
time (Figure 9-17), set the temperature to the maximum temperature. After a while, the LED should flash
on the thermostat and then the LED and relay switch to the on position.

If the LED does not flash, then recheck the wiring changes you made to the home automation
controller and the thermostat, especially in the area of the RF modules. Check that they have 5V across
their power pins.

You can check that the relay is working by setting your multimeter to continuity mode and attaching
the leads to the screw terminals. When the relay clicks and the LED goes on, then the buzzer should sound
on your meter.

Step 9. Box the Project

This thermostat is going to replace the incumbent thermostat. So a box that is the same size or slightly
larger, but that still accommodates the stripboard and other components is ideal.

The power supply presents a number of options. If the old thermostat has both neutral and hot wires,
then you could wire the power supply within the box. Otherwise, you will need a power outlet near the

thermostat.

In boxing the project, the author’s approach is to buy a box that is easily big enough to contain
everything and then place the project components into the box and rearrange things until a good layout has
been achieved.

Once I am sure where everything is going, I mark the box for drilling.

Figure 9-14 shows the components sitting in the box, while Figure 9-15 displays the drilled front
panel.

e
1

ceEew

Ll
b |
]
T

JREE o
o o u e

=

Figure 9-14 Positioning the controls

e

Figure 9-15 The drilled front panel

The LED is pushed through a 5mm hole. The tight fit will keep the LED in place.

You will also need to drill a hole for the lead from the power adapter, as well as some holes in the
back of the box to allow the wiring from the heating system to enter and to fix the box to the wall.

Fixing holes should ideally reuse the holes in the wall used by the old thermostat.

You also need to add some temperature markings to the thermostat. If you are using degrees
Fahrenheit, then the minimum temperature is 30 and the maximum 100. Mark these positions and then
interpolate the six points in between (40, 50, 60, 70, 80 and 90). You can just write the numbers on the
plastic case using a marker pen, or use run-on transfers, or print an underlay onto paper, cut it out, and
stick it onto the box. Suitable underlay designs for both degrees Celsius and Fahrenheit can be found at
this book’s web site at www.automatedlair.com.

Step 10. Installation

This project has essentially provided you with a switch that will close when heating is required. This is
the normally open contacts of the relay. The actual wiring of this to your central heating is up to you.

I emphasize again that you should carry out such wiring with great caution, and if you are not exactly
sure what you are doing, then find someone who is qualified to work on your heating system.

Using the System

The settings page on the home automation controller includes an option to set the temperature units (Figure
9-16). If you check the box “Use degrees C,” all the temperatures displayed on the home automation
controller will be in degrees Celsius.

'HemeAutomation

Bedroom 1

Bedroom 2

Figure 9-16 Setting the units of temperature

You should set this setting to your desired option before you start making your temperature profile,
because if you change it afterward, you will have to do it again.

The Evil Genius can reduce their energy costs by setting a temperature profile that matches their
daily routine. So there is little point in heating the lair if the minions and the Evil Genius himself are all
out performing nefarious deeds. Since the Evil Genius prefers being a homebody on the weekends, a
different schedule is required, hence the separate options for Monday to Friday compared to weekends.

Figure 9-17 shows a typical weekday temperature profile.

http://www.automatedlair.com

1 WA S 647 AM]
http://10.0.2.15:8080/heatingD? H

Mon-Fri Heating

01-0d 04-08 04-07 a7-oa ORI -1

EECE I T I T T T

1E-15 15-16 A6-17 17-22 2B N 2324
E=EHECEER [gexf |
Save Changes |l Home

Figure 9-17 A temperature profile

The temperature is set to the minimum (30° F) overnight, but then between 4 a.m. and 6 a.m. it is set
to increase to 50 °F, and then to 60 °F between 6 a.m. and 7 a.m. It then goes up to 70° F between 7 a.m.
and 9 a.m. when the Evil Genius is performing his ablutions.

From 9 a.m. until 4 p.m., when everyone is out, the temperature is reset to the minimum, rising again
for the rest of the evening until it is time for bed.

Theory

This is a fairly standard Arduino type project. We do, however, use a couple of interesting components in
the form of the temperature sensor chip and the RF module for Arduino-to-Arduino communication.

We will now discuss both these components, and then look at how to program an Arduino to use
them.

One-Wire Sensors

The temperature sensor used in this project is a very interesting device. It combines a temperature sensor
and a processor that sends the temperature in digital form. This allows it to be positioned a distance away
from the Arduino, without the length of the wire causing problems with the accuracy of the temperature
measurement.

See the article at www.arduino.cc/playground/Learning/OneWire for an interesting introduction to
these sensors.

The Thermostat Sketch

The sketch for the thermostat is listed next.

http://www.arduino.cc/playground/Learning/OneWire

void checkForMessagel]
{
uint8_t buf [VW_MAX_MESSAGE_LEN] ;
uintf_t buflen = VW_MAX MESSAGE_LEN;
if (vw_get_message (buf, &buflen))
{
ff there was someching co receiwve.
ff We only care about the first two bytes
ff first byte identifies the receiver of the message
ff the second is the cemperacure in F
byte receiver = buf[0];
byte pavioad = buf{l];
if (receiver == THERMOSTAT_ID) // A
{
{4 the message is for me
setTemp = payload:
Serial.print{"Radic set temp to: *); Serial.println(setTemp]:
flashi(2);

]

int readTemperaturef)
{
sensors.requestTemperatures();
float tempC = sensors.gecTempC |thermometer);

return (int) (DallasTemperature::toFahrenheit (tempt));
i

int readSecTemperaturef(]

i
int raw = analogRead(potPin}:
int £ = map{raw, 0, 1023, MIN_TEMP, MAX_TEMP);
return t;

i

void setFower()
{
static boolean lastOnOff = falge;
static long powerlastChanged = 0;
static int lastSetTemp = 0;
boolean onOff = (actualTemp < setTemp):
long £t = millis(};
long t2 = powerLastChanged + MIN_ON_TIME * 1000L;
boolean encughTimeElapsed = (t > t2);
boolean tempSettingChanged = [absi(setTemp - lastSetTemp) > 1);
digicalWrice(ledPin, onOff);

if ((omOEEf != lastonOff) && (encughTimeElapsed || tempSettingChanged))

{
Sarial.print("set: "): Serial.printlni{satTemp);
Serial.print("temp: *}:; Serial.println{actualTemp):
digitalwWrice(relayPin, onOff);
powerLastChanged = ¢;
lastOnOEE = onOEE;
lastSetTernn = setTemp;

¥

¥

void flash{int n)
{
For (int i = 0; i .<=m 'p; di++)
{
digicvalwrice(ledPin, HIGH):
delay (100} ;
digitalWrite [ledPin, LOW);
delay{100);

The three “include” statements load the libraries used by this sketch.

The THERMOSTAT_ID constant mirrors the code in the Android application for the home
automation controller and is used to identify messages as being for the thermostat.

We then have four constants that you can change to suit your own requirements.

MIN_ON_TIME is the minimum time that the heating will be switched on or off for. This prevents
“hunting,” where just as you get to the set temperature point the heating would be turned on and off quite
frequently. This is not good for the heating. We have set this to two minutes.

The RADIO_CHECK_PERIOD is the time between checking for an incoming signal from the home
automation controller. This is set to 10,000 milliseconds or 10 seconds.

MIN_TEMP and MAX_TEMP determine the temperature range (in degrees Fahrenheit). Note that
even though the sketch assumes degrees Fahrenheit throughout. If you work in degrees Celsius, you do not
have to change anything in the sketch, just calibrate the dial differently.

We then define the pins used by the various devices connected to the microcontroller and initialize
the OneWire and DallasTemperature libraries.

The “setup” function does the usual setting up of pins. A neat trick with the “overrideSwitchPin” is
to set it as an INPUT and then do a “digitalWrite” to HIGH. This has the effect of turning on an internal
pullup resistor so we do not need a separate resistor. We also start the radio listening and set up the
temperature Sensor.

The “loop” function has two paths through it, one if the override switch is set and one if it isn’t. If the
override switch is NOT set, then we check for a message from the RF receiver, as long as sufficient time
has elapsed since we last checked. Otherwise, we read the set temperature from the variable resistor.

The main loop then reads the actual temperature and calls the function “setPower” to determine if the
relay should be turned on or off.

The “checkForMessage” function looks to see if there is a message in the buffer from the radio
receiver, and if there is, it checks that the first byte contains 0x41. This indicates that the message is
intended for the thermostat, and that the next byte will contain the set temperature in degrees Fahrenheit.
Every time this happens, the LED flashes twice.

The function “readTemperature” requests a temperature from the sensor and converts the reading in
degrees Celsius to Fahrenheit.

The next function, “readSetTemperature”, converts a reading from the analog pin to which the
variable resistor is connected into a temperature in the range of 30 to 100 using the map function. This
built-in function is very useful for converting readings from one range to another. The arguments it takes
are the number to be converted, the range of unconverted values (in this case, 0 to 1023 from the analog
input), and the range of output numbers (in this instance, 30 to 100).

Finally, the “setPower” function changes the state of the relay if required. This function uses three
static variables that retain their value each time the function is called. These allow the function to
determine if the state of the relay has changed, how long it is since it last changed, and the last set
temperature. Only if the state has changed from on to off or vice versa and enough time has elapsed or the
set temp has changed will the state of the relay be changed. This last clause of testing if the set
temperature has changed is to allow a quicker response if the user changes the set temperature using the
control knob.

Summary

The Evil Genius can now lie in bed with his Android phone, turning lights and power outlets on and off as
well as controlling the temperature of his lair.

The next and final chapter on home automation in this book will allow the Evil Genius to prevent his
minions from wandering off by building an electric door system, one that is controlled both by RFID tags
and the home automation controller.

CHAPTER 10
RFID Door Lock

NO MATTER HOW MANY TIMES the Evil Genius punishes them, the minions still manage to misplace or
forget their keys and get locked out of the lair. With this project (Figure 10-1), not only do the minions
simply have to take an RFID key with them, which can be attached to their person, but if they also manage
to lose the RFID key, the Evil Genius can unlock the door remotely using the home automation controller.

Figure 10-1 The RFID and wireless door lock

If you are intending to build this project into your home for real, you may wish to consider that
although the basic RFID security mechanism and door latch probably offer better security than a regular
lock, being able to unlock the door over the Internet or even just your network offers some weaknesses.
So you may wish to disable that part of the project.

There is an element of “security through obscurity,” but someone who also has this book could gain
access pretty easily.

For instance, to unlock the door using the web interface, all you need to do is guess the password, or
if they have an Arduino and an AM transmitter, transmit the default unlock code. If this hasn’t been
changed, they could gain access very easily. Even if it has been changed, there are only about 65,000
combinations, so they could try all of them automatically.

So these are the risks. You can make your own assessment and decision as to how best to protect all
your worldly goods with this in mind.

Construction

Figure 10-2 shows the schematic diagram for the project. This is another project based on taking an
Arduino project off-board. In many ways, it is a project quite similar to the thermostat. It uses the same
kind of RF receiver, but instead of a relay it has a power MOSFET transistor controlling the door latch.

REID ; .
I b

Gkl

THOS FOPZI0

TR 1. Clats
2 (e 2 Drmini
A Cuglpeat 3 Sedsto
I
¥
100

2

Figure 10-2 The schematic diagram

The door latch requires a 12V power supply, so we will use a voltage regulator IC to generate a 5V
supply for the microcontroller. It also has a three-color LED. These LEDs are actually two LEDs—one
red, one green—in the same package, with their cathodes (negative sides) connected together. You can
turn on the red and green separately, and also turn them on together, in which case you get the third color,
orange.

What You Will Need

You will need the following components listed in the Parts Bin to make the RFID key and door latch.

PARTS BIN

Part Quantity Description Source
Microcontroller | ATMega328 with bootloader SparkFun: DEV-10524
Electric door latch | 12V DC door lach Famell: 4333550
RF receiver 1 433-MHz receiver module Farnell: 1304026
IC socket | 28-pin DIP IC socket Farnell: 1824463
R1,R2 2 1k{2 0.5W metal file resistor Farnell: 9339779
R3. R4 2 27042 0.5W metal file resistor Farnell: 9340300
Cl 1 100uF 16V electrolytic capacitor Farnell: 1136275
c2 | IuF 16V electrolytic capacitor Farnell: 1236655
C3 1 100nF ceramic capacitor Farnell: 1200414
C4,C5 2 22pF ceramic capacitor Famnell: 1600966
D1 1 Three-color common cathode LED Farnell: 1581197
D2 | 1 N4001 Famell: 1458986
T1 1 FQP33N10 N-channel power MOSFET Farnell: 9845534
IC1 i 7805 voltage regulator Farnell: 1261233
X1 1 16-MHz crystal Farnell: 1611761
51,52 2 PCB push-button switches Farnell: 1448152

Stripboard | 29 strips of 24 holes Farmnell: 1201473
Header socket | For the RFID and RF modules Farnell: 1218869
Header plug | Two-way for the RFID antenna Famnell: 1097954
Power supply | 12V 1A power supply Farnell: 1279478
Blanking plate 1 To enclose the RFID antenna

Praject box l Local electronics store
Power socket | 2.1mm power socket Farnell: 1217038

You will also need an Arduino Uno or Duemilanove to program the ATMega328 or ATMegal68
chip. When you buy the ATMega, make sure you get a version with the Arduino bootloader already
installed on it.

This project uses the same 433-MHz RF module we used in the thermostat project. In this case, you
do not need another transmitter, because the same transmitter on the home automation controller can send
to both the thermostat and the door lock.

The door solenoid requires a 12V DC supply at a few hundred milliamps, so we will use a 12V
power adaptor with an output current of up to 1 amp.

The RFID module was bought on eBay (the Evil Genius loves a bargain) as a kit that included a 125-
kHz RFID module, a suitable coil antenna, and a selection of tags. The pin connections and format of the
code output are shown in Figure 10-3. If you cannot find the exact same module, use a socket on the
stripboard and connect a header and lead to whatever module you end up with. You may also have to
adapt the sketch if the output code is different.

%
‘1_2 pC/ ,f:g, vce

- h*
L

Figure 10-3 The RFID module used

The door latch is of the type that fits into the door frame. When 12V is applied across its leads, it
powers a solenoid that allows the side of the socket to move. It is a fail-locked arrangement, meaning that
if the power fails, the door remains locked unless you use your regular key to unlock it instead of the
RFID tag. This design will work with pretty much any 12V door lock mechanism, so if you think you may
need something different to the lock specified in the parts list, do a little research and see what you can
find.

In addition to these components, you will also need the following tools in the Toolbox.

TOOLBOX

» Soldering equipment
» A craft knife and ruler

m Multi-core wire in various colors
m An electric drill and assorted bits

» A multimeter

» Woodworking tools to fit the door latch

Step 1. Prepare the Stripboard

Figure 10-4 shows the stripboard layout for the door lock.

1

1 Ant
2
3
4
§
[
7
8
g
RFID Ant i
12
13
+5\ 14
Dala 15
Data 16
Ghp 17
18
13
20
21
22
F'o

G

\%\

+12V

2 3
-
L]
L]
L]

X

GHD

|
Tx

§ | #5Y

I

i

X

[oo 0w

:
e

1% 28
2N 27
3% 26
&% 25
5% 24
B 23
X2
-PX'51;‘
8% 20
())
b b ik
12% 17
13 18

415

MR [:'

L[z j——s {Oi[}e

112 13 14 15 16 17 18 18 20 21 22 23 24

Screw
Terminal

b

T "
Latch
[

e GMND
— Green

h-l-'-"'-rREd

1 2 3 4 5 67 8 8101 12131315161718192021 2223 24

Figure 10-4 The stripboard layout

Cut the board to the right size. The neatest way to do this is to score the board heavily with a craft
knife and then break it over the edge of a table. You can also use a strong pair of scissors, but the result

will not be as neat.

The prepared stripboard is shown in Figure 10-5.

® &

., oL

N0

.
L.
7
L
.
&
-

Figure 10-5 The prepared stripboard
Use a drill bit to make breaks in the track where indicated by an “X.” You can do this by just

twisting the bit between your thumb and forefinger. Note that the board is shown from the top side in
Figure 10-4 and that there are 24 breaks to make.

Step 2. Solder the Links

The next step is to solder the wire links onto the board. Again, there are a lot of these (9), so take care

that you have made all of them and got them all in the right places.
Leave the insulation on the long link on the left of the board to protect it against accidental shorts.

When all the links are in place, the board should look like Figure 10-6.

e

drrrrrrBeBRD
IE R RN

Figure 10-6 The stripboard with links in place

Step 3. Solder the Resistors and Diode

It is always a lot easier to solder the lower-lying components first, so solder in the resistors and diode
next.

Make sure the diode is the correct way around with the bar toward the top of the board. The span
isn’t wide enough for the diode, so lay it on its side as shown in Figure 10-7.

Lin s ey I{

PR

S N T R

. R

4 xoaa LI IR B T R R

i) % . A T IR

Tols Lala e R

T ¢ » o S T RS T

PR PRI R R R SR

_l'l.l' B R E oaw R e R e

WP Rk EF R R

.Iag_.. b an- sl aa ¥ s 4

] PRCRF RS -~ PP

Fala PRCEEEEE § R

T ?1'11 'F;J;. P e T
3’_ e s yalla s e
r!.._aJ R P diaflaranis
e ¥ PO T S S R
Tk R DRI R A
raﬁi_- RLIREE Fa s s g s
R R o aplnan
La FEaiy b 3N adla o0
ad) R I A [
bt FR] »bow NEER
Fa Fa) » @ 0w oss
FRF PR o a4 8 a3 w0
v]) R
F) 4 3 a oA B L [I
a a s a T L T R E R

Figure 10-7 The stripboard with resistors and diode

Step 4. Solder the IC Socket and Switches

We can now fit the IC socket and the two switches. The IC socket has a notch at one end that indicates the
end for pin 1 of the IC. It is a good idea to arrange this so it points toward the top of the board. Then,
when you come to insert the IC, you know which way around to insert it (Figure 10-8).

Figure 10-8 The stripboard with IC socket and switches

Make sure you get the switches the correct way around. They should be oriented so that the contacts
that are made when the button is pressed are at the top and bottom. You can use a multimeter set to
continuity mode to check this.

Step 5. Solder the Remaining Components

The rest of the components and sockets can now be attached to the board (Figure 10-9). Note that we have
not yet fitted the IC, RF, and RFID modules into their sockets.

Figure 10-9 The stripboard with all the components

The small capacitors can be attached either way around, but the larger can-like electrolytics must be
put in the correct way around. The positive leads are longer and the negative leads are normally marked
with a diamond symbol.

Similarly, make sure the transistor and voltage regulator are inserted the correct way and that you do

not mix them up, given that they are in the same kind of package.

The author used sockets for the RF and temperature modules, but if you prefer, you can solder them
directly to the board. Cut the header socket strip to make two sockets, one of four sockets for the RF
module (you only need to connect the bottom half) and one of six for the RFID module. You can cut a
second strip of four for the top of the RF module, but this is not essential.

A pair of header pins is used to connect the RFID antenna.

Step 6. Program and Install the Microcontroller

We need to program the microcontroller with the Arduino sketch to control the door lock. The easiest way
to do that is to use an Arduino board.

It usually makes sense to program the microcontroller IC that’s already in the Arduino board and
replace it with the chip you bought, after the chip has been transferred to the stripboard.

Before installing the sketch, change the two constants—CODE_1 and CODE_2—to something
unique for your address. Remember, this is effectively your door key. CODE_1 should be between 0x42
and OxFF. CODE_2 can be anything between 0x00 and OxFF. This code must match the four-digit code set
in your preferences page on the home automation Android app. So if you set CODE_1 to be OxE5 and
CODE_2 to be 0x77, then you should set the code in preferences to be E577.

This project requires the use of the VirtualWire library. If you have not already installed this in
Chapter 9, please follow the instructions in Step 5 of Chapter 9.

Install the modified sketch (rfid_door) onto the Arduino board. Then, with the power disconnected,
carefully remove the IC from the board and fit it into the socket on the stripboard, making sure it’s the
right way around.

When removing the IC, be very careful as it is easy to bend or break off the pins. Using a knife, ease
the IC out at each end of the socket a bit at a time, until it comes loose. You should also observe anti-
static precautions, at least touching grounded metal to discharge yourself before touching the device’s
pins. An earthing strap is another option.

At this point, a thorough inspection of the board is a good idea. Inspect the top of the board to make
sure all the components and links are in the places indicated by Figure 10-4, and check the bottom of the
board to ensure all the breaks are in the right place and that there are no accidental bridges of solder
between tracks.

Step 7. Connect Everything Up

Attach leads to the stripboard for the 12V supply. These can be soldered to the underside of the
stripboard, or pushed through the holes from the top of the board. Use whichever method is easier for you.
Attach the other end of these wires to a 2.1mm power connector and connect the three-color LED using
short lengths of wire (see Figure 10-10). Check the data sheet for your LED, the one the author used had
the longest lead being the common cathode that goes to ground. The shortest lead was the green anode,
and the middle lead the red anode.

BF ;ur ru-:r-u u L -'i"-;

Dmﬁu J5‘~’| L”fnl

Figure 10-10 Connecting up the stripboard
Slot the RFID and RF modules in place, taking care to get them the right way around.

Step 8. Test

Before we start putting things into a box, we need to test what we have made and make sure everything is
as it should be. It is a lot easier to check and make any corrections before everything is boxed up.
Start by attaching the RFID antenna, the solenoid, and the power connector (Figure 10-11).

Figure 10-11 Connected up and ready to test

You should notice that as you connect the power, the LED should flash red, then green, and then
orange twice. This is a little startup check just to show that the microcontroller chip is running.

Hold one of the RFID tags that came with the kit over the antenna and the LED should flash red. This
indicates the tag has been read, but isn’t known to the system. Move the tag out of the way and press the
left button and you should get four green flashes to indicate that the system has learned that card.

Now when you hold that card next to the antenna, you should get a green flash and hear the lock
unlatch for five seconds, during which time you cannot make another scan.

If the LED flashes green but the lock does not operate, check the stripboard around T1 and the
terminals for the stripboard. Use a multimeter to check that there is 12V at the top connection to the lock.

We also need to test that we can unlock the door remotely using the RF link. To do this, fire up your
home automation controller and select the Door option from the main menu (Figure 10-12), enter the
password (the default is “password”), and click Unlock. You should hear the latch click open for five

seconds.

#0 Ml € 4:00 Pm
http://10.0.2.15:8080/door? #

Door Lock

e | e—
UNLOCK

Home

Figure 10-12 Remotely unlocking the door
If it does not, but you see an orange flash from the LED, that means it received a signal but that the
code was wrong. So, make sure the code you put into CODE_1 and CODE_2 in the sketch match the code

you used in the settings (Figure 10-13) for the home automation controller (see Step 6 earlier).

Bl @ 4:07pm

HomeAutomation

Bedroom

password

AD45
use degrees C

Figure 10-13 Setting the door code

Step 9. Box the Project

We can now go ahead and fit everything into an enclosure, or rather enclosures, since we will need a box
with the stripboard, the LED, and other items on the inside of the door, with the RFID antenna on the
outside.

Starting with the antenna, this can be fitted to the inside of a plastic blanking panel, as shown in
Figure 10-14. We have just glued the antenna to the underside of the blanking plate, which can then be
screwed to the wall next to the door.

Figure 10-14 Encasing the RFID antenna

This is fine if the door is under a porch and protected from the weather, but if it’s exposed to the
elements, you will need to seal it or find a more weatherproof enclosure.

The box for the inside of the door just uses a standard project box. You will need to make holes in
the side or back of the box for:

» The RFID antenna lead
» The 2.1mm power socket
» The door latch wires
» Attaching the box to the wall

The front of the box lid will have a 5mm hole for the LED and two holes immediately above the two
switches into which a pen or other plastic object can be inserted to press the buttons. Figure 10-15 shows
the lid and main box of the body drilled. Lay out your components in the box and mark the position of the
holes you need to make before drilling.

Figure 10-15 The drilled enclosure
The buttons are deliberately made a bit inaccessible to discourage the minions from programming
cards for their visiting friends.

Step 10. Installation

The procedure for fitting the latch will depend on the type of latch you have bought. If it is similar to the
one recommended in the parts bin, you will almost certainly need to chisel out a bigger hole in your door
frame. You will also need to drill a hole all the way through the wall or door frame for the wires to the
RFID antenna. This should be directly opposite the control box on the inside of the house.
The control box should be close to the door latch itself to accommodate the leads to the electric lock.
Figure 10-16 shows the control box (without a lid), and Figure 10-17 displays the RFID antenna and
the door latch itself.

Figure 10-16 The control box

Figure 10-17 The RFID antenna installed outside the door

Using the System

The system is easy to use. There are only two buttons. The left-hand Add button adds the last tag read to
the list of tags that will unlock the door, and the right-hand button clears out the memory and forgets all the
tags.

The three-color LED is used to good effect to provide feedback about what the system is doing. The
various multicolor flashes it makes are summarized in Table 10-1.

TABLE 10-1 Summary of Multicolor Flashes

Flash

Two orange flashes

Four arange flashes

Green flash
Red flash

Two green flashes

Four green flashes

Five red flashes

10 fast red flashes

Meaning
Signal received from the home auvtomation controller, not intended for the
lock. Useful to see that the home automation controller is working.

Unlock command received from the home automation controller. This will
quickly be followed by a green flash.

The door is unlackad,

An invalid card has been read

Fellowing the pressing of the Add button, this indicates the tag was already
known

Following the pressing of the Add button, this indicates the tag was not
previously known and has been added to EEPROM

Following the pressing of the Add butten, this indicates that all 16 memaory
slots have been used, so the tag has not been stored.

This indicates that the Clear button has been pressed and all 16 slots
cleared

Theory

In this section, we will look at the Arduino sketch used in this project, especially how we store the RFID

code in EEPROM.

The Door Lock Sketch

The sketch for the door lock is relatively long and complex in comparison to the sketches for other
projects in this book. The complexity comes about in part because of the need to be able to train the
Arduino on valid RFID codes and store them on the Arduino in such a way that they are not forgotten

when power is lost.

#include <EEFROM.h>
tinclude <VirtualWire, h=
#define CODE 1 OxA0
#define CODE 2 0x45
fdefine docrOpenTims 5000 // &5 seconds
fidefine numCodes 16
#define codeSize 14
#define redPin 9

f#define greenPin 10
fdefine doorReleasgePin 13
fdefine addButtonPFin 11

fdefine removeButtonPin 12
fdefine rfExPin 4

fdefine RED 1
fdefine GREEN 2
f#define ORANGE 3

char codelcodeSize + 11;

char *EMPTY CODE = *00000000000000";

vold setup()
(
Serial .begin{9600) ;
pinMode (redPin, OQUTPUT) ;
pinMode (greenFin, OQUTPUT) ;
pinMcde {deorBReleasePin, OUTEUT) ;

pinMode {addButtonPin, INPUT) ;
digitalWrite (addButtenPin, HIGH)
pinMode (removeButtonPin, INPUT) ;
digitalWrite ({removeButtonPin, HIGH) ;
flash(RED, 2, 200);

flagh |(GEREEN, 2, 200);

flash (ORANGE, 2, 200} ;

vw_setup {2000) ;
vw_set_ptt_pin(5); // out of the way
vw_get tx pin(&); /! out of the way

ww_set_rx _pin{rfExPin) ;
wW_rx_start() ;

void loopi)

{

if (Serial.available() = codeZize)
{

readCard(}:

checkCode (] ;

if (!digitalReadiremoveButtonPin] }
{
clearallCedes() ;
}
if (!digitalRead(addButtonPin}}
{

}

addCode (code) ;

checkForMessage |) ;

void readCard()

{

int i = 0;

char ch = Serial.readf():
while {(ch != '‘\n' && i == codeSize)

£

i

code[i] = ch:
ch = Serial.read():

i +F;

Serial.flush{);

wold checkForMessage!()

{

uints t buf [VW MAX MESSAGE LEN];
uints & buflen = VW _MARX MESSAGE LEN:

if

{

(vw_get _message(buf, &buflen))

// there was something to receive.
flash (ORANGE, 1, 200);

if (w01 == CODE_1 && buffl] ==
CODE_2)

{

void clearLastCode()
{
for {int i = 0; i < codeSize; i++)
{
codeli] = "F';

volid flash(int color, int times, int
duratiomn)

int red = color & 0x01;

int green = golor == 1;

for (int 1 = 0; i < times;: i++)

{
digitalWrite (redPin, red);
digitalWrite (greenPin, green):
delay iduration ¢ 2);
digitalWrite (redPin, LOW);
digitalWrite(greenPin, LOW);
delay (duration / 2);

boclean isValidCode{char *code)

{
return [findCodePosition{code)
< numCades] ;

int pos = 0;
while (pos < numCodes &&
lcodesEqual (code, pos))
{
pos ++;
]

return pos;

g

vold writeCode{int pos, char *cods)
[
for (int i1 = 0; i = codeSize; i++)

¥
L

EEPROM.write({pos * 16 + 1,

code[i]) :

vold clearillCodes()
{

for (int pos = 0; pos = numCodes;

pos++]

{

writeCode (pos, EMPTY CODE);
1
flash(RED, 10, 50);:

]

boolean codesEqual (char *code, int pos)

i

1

for {int i = 0; 41 = codeSize; i1+t)
i
char ch = (char)EEFECOM.read|pos
* 18 + 1)
if {codeli]l != chj

{
return false;

t

return true;

This is a well-structured sketch and a good illustration of how complex logic can be simplified by
keeping your functions small.

Starting at the top, we first include the VirtualWire and EEPROM libraries. The VirtualWire library
lets us receive communications from the Arduino in the home automation controller, and the EEPROM
library lets us store the RFID codes in EEPROM memory so it is preserved even when the power is lost

to the Arduino board.

The two constants CODE_1 and CODE_2 should be changed to something unique for your address.
Remember, this is effectively your door key. CODE_1 should be between 0x42 and OxFF. CODE_2 can
be anything between 0x00 and OxFF. This code must match the four-digit code set in your preferences
page on the home automation Android app. So, if you set CODE_1 to be 0xE5 and CODE_2 to be 0x77,
you should set the code in preferences to be E577.

The constant “doorOpenTime” defines how long the door will remain unlatched when it has been
released. The number is in milliseconds, so 5,000 is 5 seconds.

After the usual pin definitions, the “setup” function sets up the pins appropriately and then starts the
VirtualWire library listening to communications over the radio.

The RFID reader is connected to the Rx pin of the Arduino, so whenever a tag is near enough for it to
read, it will send the card’s ID to the Arduino. The first thing we do in the “loop” function is to see if we
have received any card data using Serial.available(). If some data are found, then the code is read and
checked to see if it is a valid RFID code. After this, the loop function also checks to see if either of the
buttons have been pressed and takes the necessary actions. Finally, the loop function checks for any
messages received from the radio.

That description explains what’s going on at the top level. Each of those actions is implemented as a
series of layers of functions, which we will discuss in more detail now.

“readCard” will read a character at a time until the correct message length is reached, or there is
nothing more to read, or until the “\n” newline character is read. It puts the card ID just read into the
global variable “code,” which is used throughout the sketch to refer to the last code read.

“checkForMessage” looks to see if a message has been received from the radio, and if one has, it
checks that the code matches, and if it does, it unlocks the door.

“checkCode” simply checks the last code read to see if it is a code that the Arduino knows is valid.
If it is, it unlocks the door.

There are no prizes for guessing what “unlockDoor” does. The command “Serial.flush()” clears out
any subsequent card readings in the buffer that would otherwise cause the lock to repeatedly unlock, as
every time a card is presented to the reader it is read multiple times.

“clearLastCode” clears the last code that was read. This is called once the door has been unlocked
and if it was not there, the door would repeatedly unlock until an unknown tag was scanned.

The “flash” function is used to communicate the state of the system to the user. It takes three
arguments. The first is the color, which can be RED, GREEN, or ORANGE. The second argument is the
number of times to flash, and the final argument is the delay in milliseconds between each flash. This
function is called from all over the sketch to indicate what is happening.

The function “isValidCode” checks to see if the code supplied as an argument is a known and valid
RFID code. This is a thin layer over the function “findCodePosition”, which reads though each of the
possible 16 codes to see if the code supplied matches. If it matches, the position is returned. If no match is
found, 16 is returned.

“addCode” is used when the lock has a new code added, as a result of someone pressing the Add
button. If it already knows the code, it flashes green twice; otherwise, it finds the first unused slot in the
16 code positions and stores the code there, finally giving four green flashes as confirmation. If all 16
slots are in use, it gives five red flashes to indicate it was not possible to store the new code.

“writeCode” takes two arguments: the code to write and the position from 0 to 15 in which to write
it. All reading and writing to the EEPROM has to take place a single byte at a time.

As the name suggests, “clearAllCodes” resets all 16 codes, making them available again to store tag
IDs.

Finally, “codesEqual” compares a code with a code at the position specified.

Summary

This was the last of the projects for the home automation system. In the next chapter, we look at how you
can use an Arduino with an Ethernet shield to carry out some simple web-based automation tasks.

CHAPTER 11
Signaling Flags

IF, DURING THE COURSE of a leisurely bath, the Evil Genius requires further refreshment or other
essentials, he can use any Internet device that is handy—perhaps his beloved ebook reader, for instance—
to summon a minion from the kitchen quarters by raising a small servo-driven flag (Figure 11-1).

Figure 11-1 The Ethernet flags

In fact, the Evil Genius has a choice of two flags, to which different instructions can be attached. He
may, for instance, choose to have one flag for requesting more wine and another for hot towels.

The flags are controlled from the web page shown in Figure 11-2.

8006 /(D) 192.168.1.30/a=4 N

|

« C ff) 192.168.1.30/a=4 v X

.| HOME AUTOMATION || Electronics ® || Other Bookmarks

Minion Summoner

(_ More Wine) | Cancel WIna_:l _Warm Towels | | Cancel anels._}

Figure 11-2 The controlling web page
This flag is strategically placed next to the butler’s favorite armchair in the kitchen. Once activated,
the flag will rise to the vertical position in front of the butler’s nose until the servant summons up

sufficient consciousness to attend to the Evil Genius.
As a secondary use, enthusiasts of the agile software development technique called eXtreme

Programming have used this project to “raise a flag” while an integration is in progress, as suggested by
Kent Beck.

Construction

This project is easy to build and does not require much soldering, other than attaching header pins to

wires. It does, however, require a little fairly simple woodworking.
The project uses an Arduino and an Ethernet shield. This allows the Arduino to act like a tiny web
server so that web requests can be sent to the Arduino from a web browser to raise or lower the flags.
The flags are mounted on small servo motors, which in turn sit on top of wooden poles. The flags are
made of paper that is attached to a wooden barbecue skewer. When the servo rotates, it “raises” the flag.

What You Will Need

You will need the following components shown in the Parts Bin to construct this project.

PARTS BIN
Part Quantity Description Source
Arduing 1 Arduino Uno See description
Ethernet shield [SparkFun; DEV-09026
Servo motor 2 9g servo motor ¢Bay
Pin headers I 0.1-inch header strip Farnell: 1097954
Screw terminals 2 2A two-way screw terminals Farnell; 1055837
Wooden base] 2 feet (600mm) of 2 inch by 4 inch Hardware store
or similar
Wooden pole 2 3 feet (900mm} of z-inch { 12mm) dowel Hardware store
Wooden skewer 2 10-imch (250mm) weoden barbecue skewers
Paper 1 Letter- or Ad-size paper to make the flag
Power supply | 12V, 1000mA or more, wall-wart type Farnell: 1279478
power supply

The servo motors were obtained from eBay. Small 9g servo motors were used because they draw so
little current that they can be driven directly from an Arduino output pin. Look for servo motors with a
current rating of less than 40mA.

As with most of the projects in this book, you will need wire to connect things up. For this project,
you will need more wire than usual because you’ll have to run wires from the servos to the Ethernet
shield.

In addition to these components, you will also need the following tools shown in the Toolbox.

TOOLBOX

L 4

» An electric drill and assorted drill bits
» A wood saw

m A craft knife

» Assorted screws

» Wood glue

» A hot glue gun or epoxy glue

» A computer to program the Arduino

» A USB-type A-to-B lead

L 4

There are many possible sources for the Arduino Uno board, so shop around.

When buying an Ethernet shield, use some care because you will need an “official” shield based on
the Wiznet chipset, NOT one of the cheaper but more difficult to use unofficial boards based on the
ENC28J60 Ethernet controller chip.

Step 1. Construct the Wooden Platform

The size and shape of the wood really does not matter much. You just need to make sure they are far
enough apart not to hit each other, and tall enough to prevent the flags from hitting the ground in the

“down” position. You may find a different way of positioning the flags, perhaps making a bracket to fit on
the wall.

The platform uses a good solid wooden base with about 2 feet (600mm) of thick wood, into which
two holes were drilled that are the same diameter as the wooden poles. The poles were then glued into
the base.

The top of the poles was trimmed on one side (Figure 11-3) with a craft knife to make a flat edge to
which a server could be screwed by its bottom lug (Figure 11-4).

Figure 11-3 Cutting a flat edge to mount the servo

Figure 11-4 A servo attached to the pole

Place the Arduino board onto the center of the base and place the screw terminal blocks on each
side. Mark the position of the holes for the Arduino and the terminal blocks and drill guide holes for
fixing them all in place. Fix the terminal blocks in place.

Step 2. Wire the Servos to the Terminal Blocks

The schematic diagram for the project is shown in Figure 11-5, and the wiring diagram is displayed in
Figure 11-6.

01013 Sars 1

Arduino Ethernet
Uno Shield

Sarvo 2

Figure 11-5 The schematic diagram for the project

josunn

Figure 11-6 The wiring diagram for the project
The servo leads are terminated in 0.1-inch header sockets, each servo having three connections. Two

connections for power (GND and 5V) and one control signal. Cut lengths of wire to span from the header
sockets of the servo to the terminal blocks and solder a three-pin section of the header strip to the

appropriate wires, using the wiring diagram in Figure 11-6 as a guide.

Step 3. Fix the Arduino to the Base

When the wiring between the terminal blocks and the servos is all in place, use small screws to fix the
Arduino into position and place the shield on top.

Then, cut four short wires of about two inches (50 mm) and attach them in pairs to two sections of
two-pin headers.
Plug the power lead header into the +5V and GND sockets on the shield and the control signal header into
pins D2 and D3 on the other side of the shield (see Figure 11-6).

Step 4. Program the Arduino

Detach the shield from the Arduino before programming it for the first time. This will prevent potential
damage from the pin modes set in the last sketch to be used on the Arduino board. Subsequent
programmings can be carried out with the board and shield in place.

Open the sketch ch11_ethernet_flag. All the sketches can be downloaded as a single zip file from
www.duinodroid.com.

Before uploading the sketch, there are a couple of changes we need to make. If you look at the top of
the sketch, you will see the lines:

byte mac[] = { 0xDE, 0OxAD, 0xBE, 0xEF,
O0xFE, 0xED };
byteapl] = £ 192, 168, 1, 30)}

The first of these, the mac address, just has to be unique among all the devices connected to your
network. The second one is the IP address. Whereas most devices that you connect to your home network
will have IP addresses assigned to them automatically by a process called DHCP, this is not true of the
Ethernet shield. For this device, you have to manually define an IP address. This cannot be any old four
numbers, they must be numbers that qualify as being internal IP addresses and that fit in the range of IP
addresses expected by your home router. Typically, the first three numbers will be something like
10.0.1.x or 192.168.1.x, where x is some number between 0 and 255. Some of these IP addresses will be
in use by other devices on your network. To find an unused but valid IP address, connect to the
administration page for your home router and look for an option that says DHCP. You should find a list
somewhere online of devices and their IP addresses similar to that in Figure 11-7. Select a final number
to use in your IP address. In this case, 192.168.1.30 looked like a good bet and indeed it worked fine.

http://www.duinodroid.com

‘Web Corfigurator

£ C f O 19216811 2 | o
HOME AUTOMATION] Becrronies WWo'Waipedia] Travel [Home) Work] Weather [Programming ®] Deher Bechmark
S Huawer Achieving 1
P Laase Time R Days 0 Hours |0 Man '
Echolife HG520s !
[DHCP Table
& Status I.'I.'-,:.' imsETa TR J
£ Basic bl] e e T
—_— Androsd 353215044 L2ETER 19235612 DE B3P T 3R 60- 33
« ADSL Hoce
SamansMaz 192260800 | Fi-1E-DF-DR-BF-A4

* WEN Setting

152.356.1 4 IC-EA-9T-A8-TE-9]
= L&N Sething
P i android_fi8deTe1enddef 19234808 | 00-23:76-BE- 4483
« DHOP
char - ARpirn-nne 19216816 00=24-2C- 00 19 -FF
NAT
ek 19205807 CE-30-62-04-E1-2F
= [P Pooute

Clares-iPod 15226800 k- B - B-FC-FD- 30
= Wirsless Lary
19216809 Z0-EF-0L -65-TE-93

ATH Traffi
----- - = - BLACKBERRY-TBEE 152.358.0.30 | 3C-74-37-84-55-27
(= Advanced
Ny 1%4.166.1.11 00-17-F2-FC-EF-G1
[Tools
android _HESZefeadddaTa6 192.168.1.17 O0=2F T~ F8-20-FE

android_f02¥900 3 ectTab 152.368.1.33 | F3-08-7F-F5-E%-20
Sichanln-PC 4 | G021 TC4-FI-AG- 98
StevesPC Q0-1F-3C-28-EC-20

matthaw-&HILG-L-1 710 G- C -6 -B1-10

The: Tranie 192.468.0,17 | EB-06-BE-58-57-64
hcobes-iFhone 152.168.1.18 | O0-20-E9-24-33-ET
{ Sbmit
Copyriaht © TO06 All Riskits Referved |
L4 r

Figure 11-7 Finding an unused IP address
Attach the Arduino to your computer by USB lead and upload the sketch.

Step 5. Test

At last, we are ready to test, so put the shield in place, attach the wires from the terminal block and plug
in the power supply. The servos should snap into position.

Open a connection on your browser to the IP address that you assigned for the Ethernet shield and try
pressing the four buttons on the web page. You should hear the servos whir.

Step 6. Make and Attach the Flags

The flags are just bits of paper attached to the wooden skewers. The skewers are glued to one of the
“arms” supplied with the servo. The “arms” have a cogged socket that allows the arm to be attached in
any position.

To make sure the flag is in the correct position. Press the “Warm Towels” and “More Wine” buttons
to put both flags up, and then fit the flags with the skewers as close to vertical as possible. Try the flags
out a bit and then attach the retaining screw to each arm when you are sure that everything is working as it
should.

Theory

In this “Theory” section, we will have a brief look at servo motors.

Servos

Servo motors are most commonly used in radio-controlled model vehicles.

Unlike standard motors, a servo module does not rotate round and round, but can only travel through
about 180 degrees. They are controlled by pulses of voltage on the control connection to the servo. The
length of the pulse controls the angle to which the servo is set.

Figure 11-8 shows an example waveform. You can see how the width of the pulses varies the servo

angle.

High Period Low Period
-

Gy

0y — : a : L J L

= Time

Figure 11-8 The servo motors

A pulse of 1.5 milliseconds sets the servo to its center position, a shorter pulse of 1.25 milliseconds
to its leftmost position, and 1.75 to its rightmost position.

The servo motor expects there to be a pulse at least every 20 milliseconds for the servo to hold its
position.

Fortunately for us, there is an Arduino library for driving servos that just allows us to use a
command like this:

servol.write (150);

This sets the angle of the servo between 0 and 180 degrees.

Summary

Content in his bath, the Evil Genius can now summon minions as required. In the next chapter, the Evil
Genius will turn his attention to the taxing problem of automating his laundry.

CHAPTER 12
Delay Timer

WORLD DOMINATION IS a messy business and the battle to remove troublesome stains in the Evil Genius’
laundry rages on, day after day. In fact, the Evil Genius even has to run his appliances at night, such is the
demand for clean minion uniforms.

The Evil Genius therefore decided to create a device that would act as a delay timer, allowing him
to run his clothes drier overnight (Figure 12-1).

Made In UK

Figure 12-1 The delay timer

This timer module can be used in a variety of ways, but the Evil Genius decided to modify his
ancient clothes drier and incorporate the timer directly into it. You could, however, have it encased in a
separate box if you desire.

After the appointed number of hours, the timer will close the contacts on its relay for 1/10th of a
second. The relay contacts are wired to the contacts on the switch that the timer is simulating the pressing
of.

CAUTION
If you intend this project to be attached to an AC-powered device, then be aware that you
should only do this if you are absolutely sure you know what you are doing and are qualified to
work with high-voltage equipment.

You should also be aware that modifying consumer equipment will void its warranty.

Construction

This is another “off-board” Arduino project, built onto some stripboard, and is a useful addition to the
home automation projects we have been working on.
Figure 12-2 shows the schematic diagram for the project.

+5Y Supply

[. |
g " I}_
M for e | 2700 | I | . B

st 22 E XEC-
e e R UL o B - I -

D13

dp

CC
GND

Figure 12-2 The schematic diagram

The design uses a common cathode seven-segment display to show the number of hours before the
event is triggered—in this case, the clothes drier is started.

A single button cycles through the number of hours. If the button is not pressed for five seconds, the
countdown begins.

What You Will Need

You will need the following components listed in the Parts Bin to make the project.

This design uses the Arduino Uno to program the microcontroller. The official Arduino web site
(wwwe.arduino.cc) lists suppliers of the Uno. However, if you are on a budget, you can use a clone of the
Arduino Uno.

The power supply is a recycled mobile phone charger. This needs to be a 5V type. Check this with a
multimeter and also establish which wire in the lead is positive.

The relay used needs to be a 5V or 6V coil.

http://www.arduino.cc

PARTS BIN

Part GQuantity Description Source
Microcontroller 1 ATMega328 with bootloader SparkFun: DEV-10524
Relay 1 5 or 6V relay Farnell: 1455502
Tl 1 BC548 Farnell: 1467872
D1 1 Seven-segment commaon cathode Farnell: 1142439
LED-—the 0.5-inch vanety
D2 1 1 N4001 Farnell: 1458986
Cl 1 IpF electrolytic capacitor Farnell: 1236655
C2,C3 2 22pF ceramic capacitor Farnell: 1600966
R1-7 7 2708) 0.5W metal film resistor Farnell: 93403(4)
RE, R9 2 1kL 0.5W metal Film resistor Farnell: 9339779
X1 1 16-MHz crystal Farnell: 1611761
Power supply 1 5V power supply See description
Stnpboard | 28 strips of 18 holes Farnell: 1201473
Header sockets 1 Two lengths of five-way socket cut Farnell: 1218869
from a socket header strip
1C socket 1 28-pin DML 1C socker Farnell: 1824463
Switch 1 Push to make switch Farnell: 1634627

In addition to these components, you will also need the following tools listed in the Toolbox.

TOOLBOX

l} 1

» An electric drill and assorted drill bits
» A hacksaw or Dremel rotary tool

» A multimeter

= A hot glue gun or epoxy glue

» A computer to program the Arduino

» A USB-type A-to-B lead

J 1

Step 1. Prepare the Stripboard

Stripboard is a perforated board, with holes at 1/10-inch pitch. Behind the holes are strips of copper.
Component leads are pushed through from the plain side and soldered to the copper strips. Figure 12-3
shows the stripboard for the sound link from the copper side.

1-!:;‘“--!-'F?t-t----!-!-r-J
‘slalsleisiefajelsinfeiaioloininjoiojojoioeiojoieiojnats
1 B 0 B B Y e slejslsleinisioiojaieiofels
B I 1 5 5 8 8 R S EY
£ 9 1 0 5 0 0 0 R B A e A R E e LR R L
sisislalsinlsla|ulelnlsis|ulelalelalelaloialn
I slajefoinlelofeie sleiaisialeielele
3 - - -

Figure 12-3 The prepared stripboard

Notice that some of the copper strips are cut where the IC is to be installed. These places are marked
by an “X” on the stripboard layout in Figure 12-4. Such cuts in the strips are made by taking a drill bit,
setting the tip into the hole where you want to make the cut, and twisting it between your fingers a few
times to remove the copper track, without actually making much of a hole in the board itself.

1 2 3 4 5 6 7 8 9101 1213 14151617
1

—s 9 ®

Relay Cail : H s .’/GND
f — & []

55—

6 X T 0
7 2]
8 s B
g AT 7
10 AN B
1 & _#Af R
12 - GERE F
e '/—4:
14 5 S Xpl
15 91 Xel
16 FAND 41
17 gL X1t
18 g1 Xoi| C3
19 0z X6 O
20 iz Xe j ‘
21 2 XL
22 g2 X9
23 2 XS SW1
24 sz X¥ ~— —
25 9z X¢e
26 P W
27 gz X1

T2 3 485 6 7T 8 91011213 14 1651617

Figure 12-4 The stripboard layout

So start by cutting a piece of stripboard that is comprised of 28 strips, each with 18 holes. You can
do this with a strong pair of scissors, but it will usually result in some ragged edges. Greater neatness can
be achieved by scoring the board with a craft knife and breaking it over the edge of a table. However, be
careful when the stripboard breaks, it can leave sharp edges.

Using Figures 7-3 and 7-4 as a guide, make the 19 cuts in the track with a drill bit.

Step 2. Solder the Sockets

The next step is to solder the IC socket and the two strips of five-way socket header. The socket header
can be cut from a long length to provide just five sockets using a craft knife (Figure 12-5).

Figure 12-5 Soldering the sockets into place
The IC socket should have the end with a notch (indicating pin 1) at the outside (bottom) edge of the
board.

Step 3. Solder the Links

There are just three links to be made (Figure 12-6). As you can see, the longer of these are left insulated
to prevent accidental shorts.

Figure 12-6 Soldering the links into place

Step 4. Solder the Remaining Components

We can now solder the rest of the components (Figure 12-7). Make sure that the electrolytic capacitor
(C1) is the right way around (refer to Figure 12-4). The positive lead of the capacitor is normally longer

and there should be a diamond symbol next to the negative lead.

) o

(ifei{® 0|0 » » » o
e 0 0T e »

.
2
.
L]

Figure 12-7 Soldering the remaining components
Similarly make sure that the diode and transistor are both the correct way around.

Step 5. Install the Arduino Sketch

If you have built some of the earlier projects in this book, then chances are you will have already
downloaded the zip file containing all the sketches from www.duinodroid.com. If you have not
downloaded this, do so now. Unzip the file and move the whole Arduino Android folder to your sketches
folder. In Windows, your sketches folder will be in My Documents/Arduino. On the Mac, you will find it
in your home directory under Documents/Arduino/, and on Linux it will be in the sketchbook directory of
your home directory.

You will need to restart the Arduino software for it to pick up the new sketches.

From the File menu of the Arduino application, select Sketchbook, then Arduino Android, and then
the sketch ch12_delay_timer.

Connect your Arduino board to your computer via USB.

We are now ready to upload the sketch to the board by clicking the “upload” icon (second to right on
the toolbar). If you get an error message, you will need to check the type of board you are using and the
connection.

Once the microcontroller is programmed, carefully remove the microcontroller chip and insert it into
the IC socket on the stripboard. Make sure you get it the right way around. The notch on the socket should
match the notch on the IC indicating the end of the chip with pin 1.

Step 6. Test

http://www.duinodroid.com

Now that we have completed the board, we can test it before we put it to use anywhere.

Solder leads between the board and the relay coil, and add short flying leads to the normally open
connections of the relay. Also add short flying leads to connect to the switch and solder the leads from the
power adaptor to the board (Figure 12-8).

Figure 12-8 Testing the timer

Plug in the power adaptor. Initially, the LED will be blank. Momentarily touch the switch leads
together and the LED should display the digit 3. This is the initial starting delay in hours. The Evil Genius
usually likes to set the timer for at least three hours, and so he thought this was a more sensible default
than one hour. Touching the leads together successively should increase the count displayed until it
reaches 9, after which it should go to 1.

A good way to test that the relay is functioning is to set the timer for one hour. It will immediately
switch to a flashing “0” after the timer starts to indicate that the timer is at 0 hours and 59 minutes, before
it will trigger.

Attach your multimeter with it set to “buzzer continuity mode,” and then make a minion stand next to
it for an hour to make sure that at the appointed time the relay clicks for a fraction of a second and the
buzzer sounds.

Step 7. Installation

Please read the warning at the start of this chapter. AC electricity can kill you. So do not install this
equipment unless you are absolutely sure you know what you are doing. Never work on an appliance

while it is connected to the AC supply.
You can either attach the power adaptor to a separate mains socket, or add flying leads to the power
adaptor as shown in Figure 12-9.

Figure 12-9 Attaching flying leads to the power adaptor

These are twisted tightly around the power pins, and then soldered. They should then be well
covered with insulating tape. The flying leads can then be attached to a convenient AC supply within the
appliance.

The Evil Genius was happy to drill a hole into the front of their appliance for the switch and cut out
a rectangle for the display. The board was then fixed in place behind the front panel of the appliance
(Figure 12-1).

Make sure that all the leads are secured using cable ties and are well away from anything that moves
or gets hot.

Theory

In this “Theory” section, we are going to look at software. We will look at how this system can be
designed using a useful technique called state transition diagrams and then look at the sketch in some
detail.

State Transition Diagrams

Although this timer is easy to operate, making a sketch that does things like start timing three seconds after
the button was last pressed can be surprisingly difficult to get right. A useful design technique that usually
saves a great deal of anguish in such situations is called the state transition diagram. The Evil Genius
prefers not to use an acronym for this.

Figure 12-10 shows the state transition diagram for this timer.

Power Up

Blank Display

T

Button Press

Hours = 3, Flash 3

Mo Button Press for 3 Seconds

Button Press

Hours++, Flash Hours

Waiting
Button Press
Timing Complete

Flash Hours O
Trigoer Relay, Blank Display

Figure 12-10 The state transition diagram

The bubbles in the diagram represent states. So the timer is always in one of three states: Standby,
Setting Delay, or Waiting (for the timer to expire). What happens when you press a button will depend on
which state you are in.

You can move from one state to another when some “trigger” occurs. So, in this case, we start up in
the Standby state, but if the button is pressed (above the line in the label), then we perform the actions
below the line, and then change to the state at the end of the line. In this case, the action is to set the
“hours” variable to 3 and flash the digit. Pressing the button again when in the Setting Delay state will not
result in a transition to another state, but will increment the “hours” variable.

We will only move to the Waiting state if there is no button press for three seconds. We will then
stay in the Waiting state until either the time period has elapsed (in which case we return to Standby) or
the button is pressed, in which case we return to the Setting Delay state.

The Arduino Sketch

As you read through this sketch, you will see how closely it mirrors the state transition diagram we just
discussed.

for (int i = O; 1 < T;: 1i++)
{

pinMode {segmentPins[i], OUTEUT) ;
]
pinMode (switchPin, INPUT};
digitalWrite(switchPin, HIGH);

£ turn on pullup resistor
pinMode (relayPin, OQUTEUT} ;
state = STANDEY;
show (BLANK) ;

void loop()
{
static long lastButtonPress = 0;
static long startTime = 0;
static long endTims = 0;
boolean buttonPressed = |
digitalRead (switchFin} ;
if (state == STANDEY)
i
if {(buttonPresszed)
{
lagtButtonPress = millis{):
state = SETTING_DELAY;
hours e
flash{hours) ;

i
else if (state == SETTING DELAY)

{

if (buttonPressed)
{
lastButtonPress = millis();
hours++;
if (hours == 10}
{
hours. = 13
1
flash{hours) ;
1
else if {(millis() -
lastButtonPress) = 3000)
{
startTime = millis{):
endTime = startTime + (hours *
60 * B0+ TON0)
state = WATITING:

}

else if (state == WAITING)
{
long timeNow = millisi(}:
hours = (endTime - timeNow) ¢ 1000
foe0 ¢ 60;
if [(buttonPressed)
{

state = SETTING DELAY;
lastButtonPress = millis();
flash thours} ;

}

else if (hourz = 0)

€
state = STANDBY;
toggleRelay () ;
show [BLANE) ;

¥

else

{
flash (hours} ;

void show{int n)
{
for l(int i=0; 1 < 3; 1i++]
{
digitalWrite {segmentPins (1],
digits[n] [i]};

void flash{int n)
i
show (BLANEK) ;
show{n) :
delay (200} ;
show (BLANEK) ;
delay{200);

showi{n)

vold toggleRelay ()

{
digitalWrite (relayPin, HIGH);
delay (1007 ;

digitalWrite({relayPin, LOW);

gt

We start by defining an array of “ints” to contain the pins used by the segments of the display. We
then define the pins to be used for the switch and the relay.

To display the segment patterns for the different digits, we use a two-dimensional array. We add an
extra row to this array to represent all LEDs off. We will see later how this simplifies the code. In fact, it
is the BLANK constant that refers to this row.

The next three constants (STANDBY, SETTING_DELAY, and WAITING) represent the three states
we described in our state transition diagram. These could be any numbers, as long as they are different
from each other.

We then declare two variables “hours” and “state”. The variable “state” holds the current state that
the timer is in, and “hours” is the number of hours set.

The “setup” function uses a loop to set all the segment pins as outputs and sets the modes of the other
pins. Doing a “digitalWrite HIGH” to the switch pin enables the internal pull-up resistor for the pin.

We now come to the “loop” function, and it is here that we model the state transition diagram. We
first define some static variables that will not be reset each time the function is run. These variables are
used to record times at which events happen, such as the last time that a button was pressed.

We then have sections for each of the states. So, if we are in the STANDBY state, then we first
record the time at which the button was pressed, then set the “state” variable to SETTING_DELAY, set
the “hours” variable to 3, and then flash it.

You should be able to follow similar code for the other states and relate it to the state transition
diagram.

Three other utility functions exist. The function “show” sets the appropriate segments for the digit
supplied as its argument. The function “flash” does the same, but just flashes the digit for 200
milliseconds, and “toggleRelay” pulses the relay on for 100 milliseconds.

Summary

This is a useful little project that the Evil Genius can put to a number of good uses. It is also the final
project-based chapter in this book.

I hope you have enjoyed building these projects, and will be inspired to combine your Android and
Arduino devices in a suitably “Evil Genius” manner.

The following appendix provides you with a starting point for learning about Android Open
Accessory development.

APPENDIX
Open Accessory Primer

BECOMING ADEPT AT Android programming is a book in its own right. However, there is little more than
the concise Google documentation available on the topic of the Open Accessory standard.

In this appendix, it is assumed you have a basic familiarity with Android and Arduino programming,
but want to understand how the Open Accessory apps used in many of the projects work.

Learning Android Programming

There are many good books on the subject of learning Arduino. Buy one and work through at least the first
few chapters to get an understanding of key concepts like Activities and Intents, as well as how to set up
a development environment and use the Java programming language.

Many web resources and tutorials are available to get you started. However, the advantage of a well
thought out and accurate book is that there will be a single consistent approach, whereas mixing and
matching from web resources can be confusing to the beginner since each author will do things a different
way.

Android development is a lot harder than Arduino programming—or rather there is a lot more to
learn.

The author used the Eclipse plug-in for Android, which is a very popular approach and seems to
work pretty well. Eclipse is an IDE like the Arduino IDE, but considerably more complex and powerful.

Arduino Programming

Learning Arduino is altogether a much easier task. Again, there are many good books out there and new
ones appearing all the time. Look at the listings and reviews at your favorite book store. If you like the
style of this book’s author, you will find two books by him there: Programming Arduino: Getting Started
with Sketches and 30 Arduino Projects for the Evil Genius.

The Example

The Google documentation comes with a very comprehensive example for using the Open Accessory
interface with an Arduino-based board called the ADK. This board was developed specifically to
demonstrate the features of Open Accessory. It is based on an Arduino Mega with USB host facilities
built in. These boards are not official Arduino boards and are more expensive and less common than the
standard Arduino boards like the Uno.

The example that Google provides (using the ADK board) is rather too comprehensive. It is literally
thousands of lines of code split across 18 classes. In this case, it’s really not easy to see the forest for the
trees.

The example we use in this Appendix pares this down to the bare essentials. This leaves you with a
still-quite-substantial 300 lines of code in just two classes.

The purpose of the example (shown in Figure A-1) is to allow us to enter a number to be sent to the
Arduino. The Arduino will then add one to the number and send it back. This is utterly pointless, but it

does demonstrate communication in both directions.

In: g sory
Resumning: streams were nall

Resuming

Figure A-1 The example app

The app also has the advantage that it will tell us everything that is going on in a “Log” area of the
screen. This is useful because, unlike a regular app that can be connected to the Eclipse debugger so we
can see what is going on, an Open Accessory app will be connected to an Arduino and not be available
for USB debugging.

On the Arduino

The Arduino part of this example is very straightforward. It is about one tenth of the size of the Android
part.

Installing the Libraries

The Google Open Accessory requires two libraries to be installed into your Arduino environment. The
first of these is a version of the USB host library, which is patched to work with standard Arduino
hardware. This should be downloaded from microbridge.googlecode.com/files/usb_host patched.zip.

If for any reason, you cannot find a download for any of the software used in these projects, please
refer to this book’s web site (www.duinodroid.com) where there will be instructions for obtaining the
software elsewhere.

To install the library, download the zip file, unzip it, and move the unzipped folder to your Arduino
libraries folder. In Windows, your libraries folder will be in My Documents/Arduino. On the Mac, you
will find it in your home directory at Documents/Arduino/, and on Linux, it will be in the sketchbook
directory of your home directory. If there is no “libraries” folder in your Arduino, you will have to create

http://microbridge.googlecode.com/files/usb_host_patched.zip
http://www.duinodroid.com

one. After installing the software, restart the Arduino software.

The second library, the AndroidAccessory library itself, is downloaded as part of the Adk package
download, which can be found here: http://developer.android.com/guide/topics/usb/adk.html.

Click the link for “Adk package download.” This will download a zip file. Unzip it and you will
find that, inside a folder named ADK_release_0512, there are a couple of files and three folders. The
only folder we are interested in is the one called firmware. This contains a folder named arduino_libs,
and within that are two folders, each containing an Arduino library. One is the USB_Host_Shield, which
we do not need to install because we have already just installed a version of it. However, we do need to
install the AndroidAccessory library.

To do this, just move the whole AndroidAccessory folder to your “libraries” folder the same way
you did the USB host library.

You will need to restart the Arduino software for it to pick up the new libraries.

The Sketch

The sketch is listed here in full. It is also included with the zip file of project sketches that can be
downloaded from the book’s web site (www.duinodroid.com). The sketch is called
apA_open_accessory_test.

finclude =Max3idZle.h=
#include <Usb.h=

#include <AndroidhAccessory.h=

Endroidiccessory acc("Simon Monk",
"DpeniccessoryTest!
"DemcKit Arduino Board®,
ARl
*http:/ /www.duinodroid.com" ,
*0000000012345678") ;

void setup()
{

acc.powerCnl} ;

volid loop()
[
byte msgll];
if [acc.igConnected())
{
int len = acc.read{m=qg,
gizeofimsg), 1):
if (len == 1)
{
byte value = mag(0];

sendMessage (value + 1};

http://developer.android.com/guide/topics/usb/adk.html
http://www.duinodroid.com

}

void sendMessage(int walue)
{

if (acc.isConnected(]))

f

LS

byte msglz];

msgl0] = wvalue =>=> 8:
msgll] = walue & 0Oxff;
acc.writelmsg, 2);

After the first #include statements, the first real code creates a new instance of the class
AndroidAccessory. The arguments to the constructor tell your Android device all about the accessory that
has just been connected to it.

The first three parameters are the “vendor”, the “application name”, and the version—in this case,
“Simon Monk”, “OpenAccessoryTest”, and “1.0”. These will be used by the Android side of the interface
to automatically start the appropriate app on the Android phone when the accessory is connected.

The next argument is a URL, and if the appropriate app is not installed, the Android phone will
present this and allow direct navigation to that URL, opening it in a browser. The app can then be
downloaded, installed, and run.

The final argument is a serial number for the app.

The setup method only needs to invoke the powerOn method, which starts the USB communication.

In the loop function, we use isConnected to determine if there is a connection to the Android device.
Note that if it is not connected, it will attempt to make a connection. So if the devices become
disconnected, there is no need to run powerOn again or reset the Arduino.

The read method determines if there is a message waiting to be read. If there is, it returns the size of
the message in bytes. If there is a message, then it is assumed to be a single byte. Once read, the byte is
incremented and then sent to the function “sendMessage” to return the new value to the Android device.

The sendMessage function first checks to see if there is a connection. If there is or one can be opened
when isConnected is called, then a message is constructed into a byte array of two bytes. This is sending
an “int” back to the Android device. If you want to send other data back, they must be packed into a byte
array in this manner.

Finally, the write method is supplied with the byte array and message length that will be sent back to
the listening Android device.

Android

The code for this side of the link is too copious to list in full here. We will list it all in parts, but you will
find this explanation easier if you fetch the source code for it from www.duinodroid.com and have it in a
text editor or IDE while it is discussed.

Auto-start and Download

One of the best features of the Open Accessory standard is that your Arduino can effectively tell your

http://www.duinodroid.com

Android phone what app it needs and cause the app to automatically start when the device is connected. It
can even direct the phone to a URL, from which the app can be downloaded.
The Arduino side of this is defined in the constructor of the AndroidAccessory.

Androidiccessory acc("Simon Monk®,
*CpenficcessoryTest",
"DemoKit Arduinc Board®,
L i i
"http:/ fwww . duinodroid. com",
*Q000000012345678") ;

The corresponding parts of the Android solution are spread across two files.
First, you must add the following lines to the Android manifest for the project. Inside the “activity”
tag, add the tag:

<intent-filter>
<action android:name="android
Jhardware.ush.action.USE _ACCESSORY
_ATTACHED" /=

</intent-filter=

Inside the “application” tag, add the following tags:

cuses-library android:name="com.android
.future.usbh.accessory" />
<meta-data android:name=*android.hardware
Jasb.action.USE_ACCESSORY ATTACHED”
android:rescurce="gxml/accessory

ot 1 ol et

The second tag names the file xml/accessory_filter, and it is this file that is used to match against
when deciding if this app is being asked to start.

=?xml version="1.0" encoding="utf-g"?=

“<resourcess
zush-accessory manufacturer=
"Simon Monk"
model="0OpenfAccessoryTaest”
version="1.0" />

</ resourcess

Lifecycle

The Android app has to cope with a number of different situations and events relating to both the
accessory and the general lifecycle of the main Activity for the app.
Figure A-2 shows the lifecycle of an Activity in Android, along with the methods that get called each

time the Activity changes from one state to another.

| Activity

1. anCreata()
2. onStart()
3. onResume()}

Y
- Running
/r onPausel)
1. anRestart(}
2. enStart()
3. onResumel) :
onResume()

Stopped =
onStop()

onDestray()

h‘

Figure A-2 An Android Activity lifecycle

Opening the Accessory

When an Activity is first created, three functions will be called: onCreate, onStart, and onResume. In our
example Activity, we implement onCreate and onResume, as shown below.
The onCreate method is very like the onCreate of any Activity. It sets member variables for the

various controls on the Activity and creates a listener to be fired when the Send button is pressed. It also
calls setupAccessory.

public wvoid onCreate(Bundle savedInstanceState] |
super .onCreate(savedinstanceState) ;

setContentView(R. layout.main};

mByteField = (EditText) findViewById(R.id.messagebyte};
mRespenseField = (BditText) findViewById(R.id.arduinoresponse]:
mSendButton = (Button) findViewByvId(R.id.sendButton):

mSendButton. setCnClickListener (new OnClickListener() {
public wvoid onClick(View v} |
sendMessageTohArduinel) ;
}
¥
setupAccessoryi():

The setupAccessory method creates an instance of UsbManager and associates it with the Activity. It
then registers the ACTION_USB_ACCESSORY_DETACHED action with the broadcast receiver
mUsbReceiver so it can invoke the closeAccessory method from the broadcast receiver when the

accessory is detached.

private vold setuphccessorvi() |
leg{*In petuphccessory”);
milsbManager = UsbManager.getInatance(this):
mPermissicnIntent = PendingIntent. getBroadcastithis, 0. new Intent|
ACTION _USB), 0);
IntentFilter filter = new IntentFiltexr {ACTICN_USB];
filter.addaction (UsbManager . ACTION_USB_ACCESSORY_DETACHED) :
registerReceiver (mUsbReceiver, filter);
if (getLastNonConfigurationInstance(] != null) {
miccessory = (UsbAccessory)l getLastMonConfiguraticonInstance();
cpenAccaessory (MAcCcessory) ;

The function setupAccessory will always be called following a call to onResume. So, it will be
possible to retrieve a handle to mAccessory using the getlLastNonConfigurationInstance method. It then
opens the accessory. If mAccessory has not been instantiated yet, it will be created in a later call to this
function from onResume.

The openAccessory method creates input and output streams to the accessory, as well as starts a
separate thread that will be used to listen for incoming messages.

private void openfccessory(Usbhbiccessory accessory) |

log(*In openAccessory”®):

mFileDescriptor = miUsbManager.ocpenfAccessory (accessory)

if (mFileDescriptor != null) {
MACCeSsSoryY = accessory;
FileDescriptor fd = mFileDescriptor.getFileDezcriptor(]:
mInputStream = new FileInputStream(fd):
mOutputStream = new FileOutputStreamif£d);
Thread thread = new Thread(null, this, “*COpenAccessoryTest®);
thread.start() ;
alertc(*openAccessory: Accessory opened®);
log(*Attached") ;

} else {

log("openfAccessory: accessory open failed®);

As we mentioned earlier, when an Activity starts, it calls onCreate and onResume.

public void onResume() |
log(*Resuming®) ;
super .cnResume|) ;

if (mInputStream != null &&
moutputsStream != null) {

log("Fesuming: streams were not mull®):
1 else {

log(*Resuming: streams werese null®):
establichPermissionsAndOpen
Accessoryl) ;

The onResume method tests to see if the streams are null. If they are, then it calls the method
establishPermissionsAndOpenAccessory. As the name suggests, this function ensures that the Activity has

been granted the necessary permissions and then opens the streams to the accessory by calling the
openAccessory method again, shown below.

private void establishPermissicnsAndOpeniccessory () {
UsbAccessery (] accessories = miUsbManager.getAccessoryList();
UsbAcceszsory accessory = (accessories == null ? null : accessories([0]):;
if {accessory != null} {
if {(mUsbManager.hasPermissionlaccessory)l |
openfccessory (accessory) ;
1 alse {
gynchronized (mUUsbReceiver) {
if (!'mPermissionRequestPending) |
mUszbManager . requestPermigsion (accessory, mPermissionIntent);
mPermissionRequestPending = true;

}
} else |
log(*establishPermissicnsAndOpeniccessory :mhccesgsory is null®);

Broadcast Receiver

A broadcast receiver allows an app to intercept system announcements. In this case, we want to know
when someone has unplugged the accessory. An instance of Broadcast Receiver is created and assigned to
the member variable mUsbReceiver. See the code listing on the next page.

private final BroadcastReceiver milsbReceiver = new BroadcastReceiver()
B0verride
public wvoid onReceive{Context context, Intent intent) {
String action = intent.gethActicen():

if (UsbManager ACTION_USE_ACCESSORY DETACHED.equalsiaction))
UsbAccessory accessory = UsbManager.getAccessory({intent):
if (accessory != null k& accesscry.eguals{mAccessory)) {
log("Detached"®} :

closehccessory () ;

This receiver is registered as a receiver in the setupAccessory method that is called from onCreate.
In the event that the accessory is disconnected from the phone, the closeAccessory method will be

called.

private void closelccessoryi{) {
log(*In closeRkccessory®):
try
if (mFileDescripter !'= null)} |
mFileDescriptor.closel) ;
1

catch (ICException)

f

finally ¢

Tt et

mFileDescriptor = null;
mAccessory = nall:
mInputStream = null;
moutputsStream = null:;

gt

Sending Data

When it comes to sending data from Android to the Arduino, we are back in the familiar territory of
writing to a stream.

In this example, we are just sending a single byte to the Arduino. The method
sendMessageToArduino is invoked when we press the “Send to Arduino” button. It retrieves the text from
the input field and validates it as being a number and then passes the byte value to sendCommand.

public void sendMessageTolrduino()

String wvaluesStr =

mByteField.getText (] .toStringfl):

bvte wal;

try |
val = Byte.parseByte(valueStr);
log{"Sending to Arduino: " + wvall;
sendCommand {(val} ;

} catch (NumberFormatBException =) {
Jf TODD Auto-gensrated catch block
e.printStackTrace() ;
alert|"The Byte should be a
number bhetween 0 and 255");

Send command constructs a byte array (of just a single byte) and writes it to the output stream. The
byte array is not necessary in this case, but if you were to pass more data, you would just construct a byte
array of the size you needed, pack it with the data and then write it to the stream.

il

public void sendCommand{byvte wralus) {
bvtel[]l buffer = new bvte[l]:

buffer[0] = (byte} wvalue:
if i(mOutputStream != null)] {
Ery {

mCutputStream.write{buffer) ;
} catch (I0OExcepticn e)
log{"Send failed: " +
e, getMessage()) ;
1
¥ else {
log{*"Send failed: mlutStream was

null®);

Receiving Data

We cannot allow the main user interface thread of the Activity to block and wait for a response from the
Arduino. Indeed, it may be the Arduino that will be initiating the communication. For this reason, the
openAccessory method starts a separate thread that listens for incoming messages from the Arduino.

public wvoid runi{) [

int ret = 0;
byte[]l buffer = new hbyte[l6384]:
int i;

while [true]
o
ret = mInput3tream.read(buffer);
} catch (I0Exception e} {

break;

3 =0
while (i = ret) |
int len = ret - 1i;
1f {Ien == 2} §
Message m = Message.obtain
imHandlexr) ;
int wvalue = composelnt
tbuffer[i], buffer[i + 1]);:
m.obj = new ValuesMsgl{'a',
valus} ;

mHandler . sendMessags (m) ;

i += 2

The thread loops forever, waiting to read something on the input stream. When it finds a message
(when read returns a value greater than zero), it constructs an int from the next two bytes in the message
using the composelnt utility method.

private int composelnt(byte hi, byte lo) |
int wal = (int} hi & Oxff:
val *= 256;
val += [(int] lo & OxfE;

return wval;

Having received a message from the Arduino, we now need to display it. But to be able to do this,
we need to interact with the Activity, which requires the use of a Handler.

Handler mHandler = new Handler() {

Elverride

public woid handleMessages (Messages

mag) |
ValueMsg £t = {ValueMsg) msg.cbi;:
log("Arduino sent: " +
t.getFlagi)

+ " " 4 t.getReadingl()};
3

¥

The handler is then sent a message that it can add to the log field. The message is encapsulated in a
class called ValueMsg. This is rather over-engineered for this application, but it is a good mechanism
when receiving more structured information from the Arduino such as sensor readings. The ValueMsg
class has members for an int reading and a flag that could be used to indicate the type of reading.

In a more practical example, this class would be extended to include any additional data in the
Arduino message.

public class ValueMsg |
private char flag;

private int reading;

public ValueMsg(char flag, int
reading) |
this.flag = flag:

this.reading = reading:

public int getReading() {

return reading:

public char getFlag() {
return flag;

Finally, the method “log” adds a line to the top of the log field in the app, and “alert” displays a
message in a dialog.

Conclusion

The Arduino side of Open Accessory is pretty easy to use; however, the Android side is considerably
more complex.

When it comes time to build your own Open Accessory app, a good starting point is to take the
example project here, which can be downloaded from www.duinodroid.com, and modify it to suit your
requirements.

You may also find a project in this book that is close to what you are trying to do and modify the app
to suit your needs. These projects are all based on the model used in the ADK example app provided by
Google.

http://www.duinodroid.com

Index

Please note that index links point to page beginnings from the print edition. Locations are
approximate in e-readers, and you may need to page down one or more times after clicking a link to
get to the indexed material.

References to figures are in italics.

A

ADK, 17, 18, 183 See also Open Accessory
Adk package download, 184
Amarino, 12, 13
Android
Activity lifecycle, 186187
broadcast receivers, 189-190
Open Accessory on, 186-192
programming, 183
receiving data, 191-192
sending data to the Arduino, 190-191
software for home automation controller, 99-101
Android apps, see individual projects
Android Geiger counter. See Geiger counter
Android light show. See light show
Arduino
Duemilanove, 89
Open Accessory on, 184—-186
programming, 183
Uno, 4, 89
See also sketches

B

Beeper, 104-106

Bluetooth modules, 4-5, 6-7

Bluetooth robot
Android app, 15
Arduino sketch, 14-15
attaching pin headers to shield, 5-6
attaching screw terminals to shield, 6
construction, 3—14

cutting the case bottom and fixing the castor, 8
final wiring, 8-9
fixing motors and battery box to case, 7-8
installing Bluetooth module, 67
installing the Android app, 12-13
installing the real Arduino sketch, 12
overview, 3
Parts Bin, 5
schematic diagram, 4
testing the motors, 10—12
theory, 14-15
Toolbox, 5
trying out the robot, 13—14

broadcast receivers, 189-190

C

controller. See home automation controller

D

delay timer
construction, 171-177
installation, 177
installing the Arduino sketch, 175-176
overview, 171
Parts Bin, 173
preparing the stripboard, 174-175
schematic diagram, 172
sketch, 179-181
soldering remaining components, 175
soldering the links, 175
soldering the sockets, 175
state transition diagrams, 178-179
stripboard layout, 174
testing, 176-177
theory, 178-181
Toolbox, 173
door lock. See RFID door lock

E

Eclipse plug-in, 183
encoding data as sound, 103—-106

G

gear motors, 5

Geiger counter
Android app, 34-35
attaching low-lying components, 22
attaching pin headers to shield, 21-22
boxing the project, 27-29
construction, 18-29
final wiring, 24
installing the Android app, 26
installing the Arduino sketch, 25
installing the GM tube, 26
installing the Open Accessory libraries, 24-25
overview, 17
Parts Bin, 20
schematic diagram, 19
soldering remaining components, 22—23
soldering the leads to the Arduino pins, 23-24
testing, 27
testing the high-voltage supply, 25-26
theory, 30—35
Toolbox, 21

Geiger-Miiller (GM) tube, 17, 26, 30

GM tube. See Geiger-Miiller (GM) tube

H

home automation controller
adding the power control to, 120-123
Android software, 99-101
attaching trailing leads, 93-94
boxing the controller, 98—99
decoding the sounds on the Arduino, 108-109
encoding data as sound, 103—106
Internet access, 102—-103
modifying, 136-138
overview, 85-87
Parts Bin, 87-89

preparing the stripboard, 90-91
schematic diagram, 88, 106

soldering remaining components, 92—93
soldering the IC, 92

soldering the links, 91

soldering the resistors and diode, 91-92
sound interface electronics, 106—-108
sound link module, 87-99

testing, 94-98

theory, 103—-109

Toolbox, 90

See also delay timer; power control; RFID door lock; signaling flags; smart thermostat

infrared remote controls, 60-61 See also TV remote

L

libraries, installing, 184—-185

light show
Android app, 53
Arduino sketch, 51-53
attaching link wires for the USB shield, 40
attaching socket, screw terminal and transistor, 45
boxing the project, 48—49
connecting everything together, 47
connecting the 5V supply, 41-42
connecting the switch and power leads, 42
constructing the Droid Accessory Base, 38—43
constructing the light show project, 43—49
cutting perfboard to size, 4445
fitting the crystal and other components, 41
fitting the remaining links, 41
installing the Android app, 48
installing the Arduino sketch, 48
MOSFETsS, 50
overview, 37-38
Parts Bin, 39, 44
Pulse Width Modulation, 50-51
schematic diagram, 39, 43
soldering remaining components, 46—47

soldering the IC socket in place, 40
testing, 42-43, 48
theory, 50-53
Toolbox, 38, 44
using the project, 50
lock. See RFID door lock

M

MOSFETs, 50
motor shield, 5

O

Open Accessory, 18
on the Android, 186-192
Android and Arduino programming, 183
on the Arduino, 184-186
example, 183-184
installing the libraries, 184—185
sketch, 185-186
Open Accessory development kit. See ADK

P

Pachube
accounts, 68-69
web site, 63-64

perfboard, 112
cutting to size, 44—45

Poluly, 5

power control
adding it to the home automation controller, 120123
attaching leads to the remote control PCB, 115-117
constructing the power control module, 112—-120
disassembling the remote control, 114-115
electronics, 111-112
overview, 111
Parts Bin, 114
perfboard layout, 118

placing components on the perfboard, 117-119
relays, 124-125
schematic diagram, 113
setting up your home, 124
sketches, 125-128
soldering the connections, 119
testing, 119-120
theory, 124128
Toolbox, 114
wiring diagram with sound interface, 121
programming
Android, 183
Arduino, 183
Pulse Width Modulation, 50-51
PWM. See Pulse Width Modulation

R

relays, 124-125

RFID door lock
boxing the project, 154—155
connecting everything together, 152, 153
construction, 146-156
installation, 156
multicolor flashes, 156-157
overview, 145-146
Parts Bin, 146-148
preparing the stripboard, 149-150
programming and installing the microcontroller, 152
schematic diagram, 147
soldering remaining components, 151-152
soldering the IC socket and switches, 150—151
soldering the links, 150
soldering the resistors and diode, 150
stripboard layout, 149
testing, 152—-154
theory, 157-161
Toolbox, 149
using the system, 156—157

robot. See Bluetooth robot

servos, 168—-169
signaling flags
constructing the wooden platform, 165166
construction, 164-168
fixing the Arduino to the base, 167
making and attaching the flags, 168
overview, 163-164
Parts Bin, 164
programming the Arduino, 167, 168
schematic diagram, 166
servos, 168—-169
testing, 167
theory, 168—-169
Toolbox, 165
wiring diagram, 166
wiring the servos to the terminal blocks, 166-167
sketches
for the Bluetooth robot, 14—15
for the delay timer, 179-181
for the Geiger counter, 30-34
for the home automation controller, 108-109
for the light show, 51-53
Open Accessory, 185-186
for the power control, 125-128
for the RFID door lock, 157-161
for the smart thermostat, 141-144
smart thermostat
boxing the project, 139-140
connecting everything together, 135-136
construction, 130-140
installation, 140
modified perfboard layout, 137
modifying the home automation controller, 136138
one-wire sensors, 141
overview, 129-130
Parts Bin, 132
preparing the stripboard, 133134
programming and installing the microcontroller, 135
schematic diagram, 131
sketch, 141-144
soldering remaining components, 135
soldering the links and IC socket, 134
soldering the resistors and diode, 134
stripboard layout, 133
testing, 138
theory, 141-144

Toolbox, 133

using the system, 140-141
sound, encoding data as, 103—106
sound interface electronics, 106—-108
Sparkfun, 5
state transition diagrams, 178-179
stripboard, 90-91

T

temperature logger
attaching components to the screw terminal, 65-66
boxing the project, 6768
construction, 6468
installing the Android app, 66
installing the Arduino sketch, 66
making a Droid Accessory Base, 65
overview, 63
Parts Bin, 65
schematic diagram, 64
testing, 67
theory, 70-71
Toolbox, 65
using the project, 68-70

thermostat. See smart thermostat

timer. See delay timer

TV remote
boxing the project, 59-60
construction, 5660
cutting stripboard to size, 57
installing the Android app, 59
installing the Arduino sketch, 58-59
IR remote controls, 60-61
making a Droid Accessory Base, 57
overview, 55
Parts Bin, 56
schematic diagram, 56
soldering components, 57—58
testing, 59
theory, 60—61
Toolbox, 57
using the project, 60
wiring, 58

U

ultrasonic range finder
boxing the project, 77-78
construction, 74—78
installing the Android app, 76
installing the Arduino sketch, 76
making a Droid Accessory Base, 75
overview, 73-74
Parts Bin, 75
schematic diagram, 74
soldering the laser and resistor, 76
testing, 77
theory, 79-81
Toolbox, 75
using the project, 79

ultrasonic range finding, 79-81

A%

wire, 89

	Dedication
	About The Authour
	Acknowledgments
	Introduction
	Part One: Android Peripherals
	1 Bluetooth Robot
	Construction
	Theory
	Summary

	2 Android Geiger Counter
	Google Open Accessory
	Construction
	Theory
	Summary

	3 Android Light Show
	Construction: The Droid Accessory Base
	Construction: The Light Show Project
	Using the Project
	Theory
	Summary

	4 TV Remote
	Construction
	Using the Project
	Theory
	Summary

	5 Temperature Logger
	Construction
	Using the Project
	Theory
	Summary

	6 Ultrasonic Range Finder
	Construction
	Using the Project
	Theory
	Summary

	Part Two: Home Automation
	7 Home Automation Controller
	The Sound Link Module
	Android Software
	Internet Access
	Theory
	Summary

	8 Power Control
	Power Control Electronics
	Constructing the Power Control Module
	Adding It to the Home Automation Controller
	Setting Up Your Home
	Theory
	Summary

	9 Smart Thermostat
	Construction
	Using the System
	Theory
	Summary

	10 RFID Door Lock
	Construction
	Using the System
	Theory
	Summary

	11 Signaling Flags
	Construction
	Theory
	Summary

	12 Delay Timer
	Construction
	Theory
	Summary

	Appendix: Open Accessory Primer
	Learning Android Programming
	Arduino Programming
	The Example
	On the Arduino
	Android
	Conclusion

	Index

